Periprocedural management and transvenous lead extraction of implantable cardiac devices

- Mohamed Dardari
- UMF Carol Davila
- Bucharest
- 2024
- Summary

General Data

- 1 million new devices implanted annually worldwide [1]
- Over 4.5 million active devices [1]
- 10,000-15,000 lead extraction procedures annually [2]
- The most common indication for extraction is device related infection (local or systemic)
- Extraction techniques: surgical or transvenous
- Multiple approaches to the transvenous technique: Laser sheaths, mechanical gun, snare devices, simple non-motorized dissection polypropylene sheaths, etc.
- Alternative variable venous approach

General classification of implantable cardiac devices

Cardiac Pacemakers	Cardiac Defibrillator
Single-chamber pacemaker (active/passive lead, atrium/right ventricle)	Single-chamber defibrillator (right ventricular lead with single or dual coil)
Dual-chamber pacemaker (two active/passive leads atrium + right ventricle)	Dual-chamber defibrillator (right atrial lead + right ventricular lead with single or dual coil.
Triple pacemaker (three probes right atrium, right ventricle, coronary sinus or, rarely, transseptal endocardial left ventricle)	Triple chamber defibrillator (right atrium lead + right ventricle lead with single or dual coil, coronary sinus probe)
Leadless Pacemaker	S-ICD

PhD thesis objectives

- Study of the efficiency and safety of the transvenous technique using simple rotary mechanical extraction sheaths with manual metal handle (Bon Giorni technique [3])
- The study of the reimplantation strategy in patients in whom the presence of the device is still necessary: pacemaker dependent patients, patients with SCD arryhthmic risk (primary or secondary prophylaxis) and patients "responders" or "super-responders" of cardiac resynchronization therapy CRT-P/ CRT-D.
- Study of infections (endocarditis) associated with intracardiac prostheses in the pediatric population

Definitions

- Definition of extraction: minimally invasive interventional complete or partial removal of the device and its components for any cause, more than 1 year after implantation, OR:
- The need to use extraction dedicated materials (sheaths, snares, catheters, etc.) regardless of the time elapsed since the first implant
- Open cardiovascular surgical removal of the device and components in patients with increased interventional risk and/or transvenous failure.
- Major complications: cardiac avulsion, vascular lacerations, massive pericardial tamponade, and death
- Minor complications: pocket hematoma, pericardial effusion, pulmonary embolism..

Lead extraction indications

- Pocket infections
- Systemic infection: sepsis with no obvious starting point other than the implanted cardiac device with or without pocket infection
- Infective endocarditis with or without positive blood cultures.
- Venous occlusion
- Lead failuri/abadoned leads

Examples of pocket infection

Patient-dependent risk factors for device infection

Device infection occurs in 1-1.3% of all implanted devices, risc factors include:

- Diabetes
- Renal disease
- COPD
- Heart failure Use of corticotherapy
- History of device infection
- Malignancy
- Anticoagulant therapy

Risk factors for procedure-dependent device infection

- Post-operative hematoma
- Lead dislodgmente and early reintervention to reposition the leads.
- Re-intervention to change generator or device upgrade
- Lack of pre-procedural antibioprophylaxis
- Temporary pacing
- Prolonged duration of the procedure

First study

- 88 patients enrolled in the study, between October 2018 and July 2022.
- Cardiovascular imaging: TTE, TOE, PET/CT
- Blood work: inflammatory tests and multiple sets of blood cultures
- Empiric or targeted antibiotic therapy
- Angiography room with surgical support on request
- Temporary back-up pacing, BP monitoring, pericardiocentesis kit, continuous EKG
- Local anesthesia with Xylin 1% in most cases, IV sedation in 3 cases
- Femoral sheath for venous back-up access
- Two operators: maine + second.

Materials used for TLE

- Bipolar electrocautery
- Surgical kit
- Surgical threads of various sizes
- Polypropylene sheaths of various sizes
- Manual metal handle
- Needle Eye snare device.
- Drain pipes

Materials

Indicațions

INDICATIONS FOR REMOVAL

	=N	%
Infection-related indication	65	74%
Endocarditis	28	31.8%
Pocket infection	37	42%
Non-infectious indications	23	26%
Venous occlusion	9	10.2%
Abandoned or disfunctional leads	14	15.9%

Caracteristiciile Pacientilor

Patient age, years, mean (standard deviation)	66.16 (16.00)	
Time since first implant, years, mean (standard deviation)	6.92 (4.47) 0.477	
Left ventricular EF, %, mean (standard deviation)	43.8% (14.06)	
Creatinine, mg/dL, mean (standard deviation)	1.00 (0.46)	
Number of patients	Frecvență = n	Procent%
Number of patients	88	100
Sex, male	59	67.0%
Comorbidities		
HTN	55	65.5%
Ischemic Cardiomyopathy	21	25%
Diabetes	23	27.4%
Renal failure	13	14.7%
Dyslipidemia	10	11.9%
Atrial fibrillation	36	42.9%
Anemia	52	63.4%

Extracted device type

Device type	Frequency (n)	Perecentage (%)
VVI	12	13.6%
DDD	32	36.4%
CRT-P	7	8.0%
SC-ICD	15	17.0%
DC-ICD	7	8.0%
CRT-D	15	17.0%
Total	88	100.0%

Lead characteristi cs

Lead type		
Lead age (average, years)	6.92 ± 4.47 (1-26)	
>5 years (leads, =n)	46	52.8%
>10 years (leads, =n)	14	15.8%
Probes extracted per procedure (=n)		
Average	2 (1-4)	
1	31	38.2%
2	34	42%
3	14	17.3%
4	2	2.5%
Types of leads extracted	Frecvență = n	Procent%
RA/RV pacing	102	68
ICD S-C	25	16.6
ICD D-C	7	4.6
CS pace	16	10.6
Fixation type		
Active fixation	139	92.6
Passive fixation	11	7.3

Results

- 93% complete extraction no residual material
- 94% partial extraction but achieving the clinical objective of the procedure
- Simple traction effective in only 11.5% of cases
- The snare device was used in 9 patients
- Alternative jugular approach for dissection in 3 patients
- 1 case of femoral approach snare for an intravascular lead
- 1 failure
- Success rates similar to those in the literature, including high-volume centers.

Complications

- No intraprocedural deaths
- No major complications
- 6.8% had minor complications: 3 cases of ventricular arrhythmias or conduction disturbances, two cases of post-procedural local hematoma, and 1 case of spontaneously resolved pericardial effusion.
- 3.4% mortality at 30 days: 1 case of refractory sepsis (albeit with procedural success), 1 case of refractory acute failure, 1 sudden death on the second post-procedural day.

First study conclusions:

- The transvenous extraction technique with non-motorized sheaths is safe and effective
- Requires experienced operator with training in a reference center.
- On-site surgical support is preferred.
- The diagnosis of systemic infections is complex and requires interdisciplinary collaboration and careful correlation of data.
- Early referral plays an important role in curing the device infection

Studiul II

• All patients undergoing extraction were re-evaluated for re-implantation

3 strategies were proposed:

1. Patients with an infectious indication and pacemaker dependent:

with pocket infection - contralateral reimplantation within the same hospitalization, but only after post-extraction antibiotic therapy

*Until reimplantation, patients were temporarily stimulated with a permanent catheter through the jugular vein and an externally fixed generator.

2. Infectious and pacemaker non-dependent patients:

with pocket infection – remote contralateral reimplantation (minimum 2 weeks of waiting + antibiotic therapy). The ipsilateral reimplantation was possible in case of a waiting period of >6 months after the healing of the infection

with systemic infection - waiting 90 days + normalization of ultrasound (vegetation) and two negative blood cultures

3. Patients with non-infectious indication for extraction:

Ipsilateral reimplantation synchronous with the extraction procedure

Results

- 76% of patients still had an indication for the extracted device
- Of these, 3 patients refused reimplantation, and 86.5% were reimplanted.
- Reimplant site:
 - Contralateral implant: 58.6%
 - Ipsilateral implant: 38%
 - S-ICD: 2 pacients.
- Time of reimplant:
 - 34.4% were reimplanted during the extraction procedure.
 - 24% were reimplanted during the same admission for extraction, but not during extraction.
 - 41.3% were discharged and reimplanted later.

Reimplant S-ICD

Concluzii studiul II

- ZERO reinfection rate 1 year after reimplantation using the proposed strategy
- Most patients still have an indication for an implantable cardiac device
- There are no consensus documents regarding the reimplantation strategy
- The best approach is a personalized one, depending on the indication for the extraction and the associated comorbidities.