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 Spinal muscular atrophy 

 Spinal amyotrophy (spinal muscular atrophy, SMA) is a rare neurodegenerative 

disease with autosomal recessive transmission, characterized by the gradual degradation 

of motor neurons in the anterior horns of the spinal cord. The disease evolves with 

progressive muscle weakness and atrophy of the skeletal muscles, along with respiratory 

and digestive manifestations that over time, in the absence of adequate treatment, can lead 

to respiratory failure, paralysis and even death in severe forms [1,2]. 

  SMA, although considered the most common cause of mortality and morbidity in 

the pediatric population, is a rare genetic disease with a prevalence of 1-2 per 100,000 

individuals and an incidence of 1 per 10,000 live births [3–5].  

The cause of SMA is the insufficient synthesis of the protein necessary for the 

survival of motor neurons – the SMN protein, and is due in more than 95% of cases to a 

deletion or mutation in the 5q13 region, at the level of the SMN1 gene that codes for this 

protein [1]. 

 Under normal conditions, 80-90% of the amount of SMN protein is produced by 

the SMN1 gene, the remaining 10-20% being produced by the SMN2 gene, which 

appeared as a result of inversion and duplication processes of the SMN1 gene during 

evolution [6,7]. The two genes are almost identical except for a few base pairs (7 in intron 

6, 2 in intron 7, one in exon 7 and one in exon 8 – where thymine is replaced by cytosine 

at position 820) [8]. This change leads to the alteration of splicing of the messenger RNA, 

by activating it in another place and removing exon 7 from the structure of the SMN2 

gene by some splicing initiator proteins [9]. As a result of missing exon 7, which occurs 

in approximately 90% of SMN2 transcripts, a structurally and functionally altered protein 

is synthesized that is shorter and rapidly degraded in cells by the ubiquitin-proteasome 

system [6–8]. 

 The SMN2 gene is usually present in multiple copies located in the same 

chromosomal region as the SMN1 gene, and the amount of SMN protein produced 

depends on the number of copies of the SMN2 gene present and influences the age of 

onset of symptoms, the severity of clinical manifestations, and the rapidity of progression 

to paralysis, atrophy and organ failure [10–12]. 

 SMA evolves with progressive muscle weakness and skeletal muscle atrophy, along 

with respiratory and digestive manifestations that over time, in the absence of adequate 

treatment, can lead to respiratory failure, paralysis and even death in severe forms. Muscle 
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weakness is frequently symmetrical and manifests predominantly proximally, at the level 

of the belts, affecting the lower limbs more than the upper ones, while deep tendon 

reflexes are abolished or greatly diminished [13]. 

 The clinical picture is dominated by the consequences of limiting motor skills, with 

important postural deformities (mainly scoliosis and contractures) and consequences on 

the functioning of the respiratory and digestive systems [14].  

 The first clinical manifestations usually appear in childhood, during the period of 

neuromuscular development and motor acquisitions, leading in severe forms to severe 

functional disabilities that evolve with paralysis and muscle atrophy, respiratory and 

digestive complications and organ failure that can evolve to death. 

 

 Types of SMA  

 Depending on the age of onset of symptoms and the degree of development of 

physical abilities, SMA has been classified into 5 main types of the disease, subdivided 

into different subtypes according to the severity of clinical manifestations [15–17]. 

 SMA type 0 is considered the most severe but also the rarest form of the disease, 

symptoms appear from intrauterine life and often patients require ventilatory support 

from birth and will never be able to sit up or control their head movements. There is 

usually only one copy of the SMN2 gene and life expectancy is less than 6 months [9,18]. 

 In type 1 - the most common type (about 58% of pediatric SMA cases), also called 

Werdnig-Hoffmann disease, symptoms appear in the first 6 months of life and patients 

have a floppy infant appearance due to severe hypotonia, with predominantly axial 

muscle weakness and diminished deep tendon reflexes [19–22]. Children will not acquire 

the ability to walk, will not be able to maintain a sitting position without support, and 

sometimes will not even have control of head position [11,21]. From a genetic point of 

view, these patients most frequently have a single copy of the SMN2 gene for subtype 1A 

and 2 copies of the SMN2 gene for subtypes 1B and 1C, and without ventilatory support 

they die within the first 2 years of life [23,24]. 

 In Dubowitz disease - as it is also called SMA type 2, which has a frequency of 

about 29% of pediatric cases, symptoms appear between 6 and 18 months of age [19,20]. 

Generally 2 or 3 copies of the SMN2 gene are present, patients can sit but cannot walk 

without support. Bone deformities, especially of the ribcage and scoliosis, contractures, 
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difficulties in ventilation and swallowing, inefficient cough appear in evolution. Life 

expectancy is longer, with these patients frequently reaching adulthood [25]. 

 SMA type 3, also called Kugelberg-Welander disease, with a frequency of about 

13% of pediatric cases, is usually diagnosed after the age of 18 months, sometimes even 

in adolescence, when the first symptoms begin to appear [11,18–20]. Frequently there are 

3 copies (in type 3A), 4 or even more copies of the SMN2 gene (in type 3B) and it 

progresses with the gradual loss, in varying degrees of severity, of the skills gained up to 

that point, but the life expectancy is not affected by this disease [25].  

 In SMA type 4, symptoms appear in adulthood, usually after 30 years, and patients 

very rarely lose the ability to walk, possibly after the age of 50, and life expectancy is 

considered normal [18]. Generally, these patients have between 4 and 8 copies of the 

SMN2 gene that manage to make enough SMN protein [26]. 

 

 Treatment 

 At the moment, 3 disease-modifying drugs are approved for the treatment of SMA 

due to mutations or deletions of the SMN1 gene in the q11.2-q13.3 region of chromosome 

5. All these drugs work to increase the amount of SMN protein in motor neurons, but 

differ in mode of action, mode of administration and level of bioavailability of tissue-

delivered SMN protein [27–29].   

 Each of the three approved drugs - Nusinersen (Spinraza), Onasemnogene 

abeparvovec-xioi (Zolgensma) and Risdiplam (Evrysdy), has recommendations, 

inclusion criteria, exclusion criteria and possible side effects, and favorable results have 

been recorded in studies for each treatment scheme, in terms of increasing life expectancy 

and improving quality of life [30–33]. 

 Long-term studies will clarify different aspects of the recommended treatment 

depending on the age of the patient, the severity of the disease, the time elapsed from the 

onset of symptoms to the possibility of starting treatment, and the effectiveness of 

switching between different treatment regimens or of the simultaneous administration of 

more many types of drugs [6,29,30,34–36].  

 The results obtained following the administered treatments depend primarily on the 

patient's neurological status at the time of initiation of therapy, the degree of bone 

deformation and muscle degradation and the number of copies of the SMN2 gene present, 
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so that the initiation of treatment in the presymptomatic period or as soon as possible from 

the onset of symptoms is crucial [37–39]. 

 For the most severe forms of SMA, with symptomatic onset before birth and a 

minimal chance of survival for several months, treatment initiated in utero may represent 

a chance for these children, according to mouse studies, potentially increasing the 

effectiveness of current therapies even in other forms of disease [39–41]. 

 

 Adjuvant therapies 

 By administering drugs, the cause of the disease is treated, bringing the necessary 

supply of SMN protein to stop the degradation of motor neurons, but to obtain the best 

results for motor, respiratory and digestive functions, it is necessary to treat the effects of 

the gradual degradation of motor neurons, especially by recovery and toning of atrophied 

muscles, prevention of infections and supervision of diet [42–44]. 

 Correct posture, positioning with orthotics, uprighting, active or passive exercise, 

and even surgical treatment are used to manage musculoskeletal deformities, improve 

lung function, and digestive symptoms [42,45].  

 

 Monitoring the evolution under treatment 

 With the advent of disease-modifying treatments, there is a growing need to 

compare the evolution of the patients' general condition and the gains obtained from a 

motor point of view, depending on the type of therapy instituted, the phenotypic profile 

of the disease, the age of treatment initiation and the severity of symptoms, with the use 

of biomarkers to personalize the therapy administered in order to obtain the best possible 

results for each individual patient. 

 Circulating biomarkers – the level of available SMN protein, the level of 

neurofilaments (exclusively neuronal components), Tau protein (neuron-specific protein) 

or serum creatinine provide information on treatment response, disease progression and 

prognosis, with the disadvantage of metabolism and clearance over time [46–50]. 

 While serological biomarkers are in the early stages of discovery and validation for 

SMA, electrophysiological biomarkers have been used over time in clinical trials of 

neuromuscular diseases to assess the functional status and capital of viable neurons 

(CMAP, MUNE, SMUP, electromyography )[51–54]. 
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 The analysis of the genetic phenotype, the changes in electrophysiological and 

imaging aspects, as well as the evolution of the level of some circulating markers can 

suggest the progression of the disease, the prognosis and the response to treatment, each 

category having advantages and disadvantages in the individual evaluation [55,56].  

 With the new discoveries in science and technology, not only the mechanisms of 

action and the routes of administration of the applied treatments will improve, but also 

the ways of evaluation for the degree of hypotonia and atrophy, as well as the functional 

evolution of the patients under treatment with the help of computerized images and of 

artificial intelligence [57]. 

 

 Management of the patient with SMA 

 The approach to the patient with SMA is multidisciplinary, because of the many 

clinical aspects and their consequences on different devices and systems and especially 

on orthopedic, respiratory, gastrointestinal and nutritional management [58,59]. 

 Complications arising from damage to the respiratory system due to 

hypoventilation due to respiratory muscle weakness, ineffective cough with accumulation 

of secretions and superinfections are the main causes of mortality and morbidity in SMA 

[59–62].  

 Toning the respiratory muscles and stimulating coughing to eliminate secretions 

through physiotherapy and kinesitherapy, postural drainage, manual or mechanical 

suction and assisted ventilation are just a few techniques to improve respiratory function 

and thus tissue and organ oxygenation [62,63]. 

 The development of functional motor skills or the regaining of the acquisitions lost 

due to the disease depend both on the applied physiotherapy and kinesitherapy programs, 

but also on the will and possibility of the patients and their relatives to perform the 

recommended individual exercises [62,64]. 

 Correct posture, mobilizing joints and reducing contractures can reduce the risk of 

disabling forms through equipment that ensures patients' mobility and the possibility of 

self-care.  

 If necessary, orthotics, support frames or wheelchairs, and even operations to 

straighten and support the spine can be used to increase the quality of life [64,65]. 
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 Motor functional scales 

 The assessment of motor deficit and muscle strength are used in daily practice by 

physiotherapists and rehabilitation doctors to determine the degree of neuromuscular 

impairment, the severity of the disease, the prognosis and the evolution over time of 

various diseases, especially in response to the applied treatments [66,67]. 

 In SMA, different functional motor assessment scales have been created and 

validated based on the clinical characteristics of the disease, correlated with the severity 

of symptoms, the age of the patients and the type of SMA. The scales, with varying 

degrees of complexity, assess voluntary or reflex movements, posture, ability to walk 

with or without support, or resistance to exertion [68,69]. 

   

 Neurofilaments 

 Neurofilaments (NF) are exclusively neuronal protein heteropolymers and are 

studied more and more in recent years as possible biomarkers for neuronal aggression, 

degradation and death due to their increased concentration in the CSF and hence in the 

blood following acute neuronal conditions, in neurodegenerative diseases such as 

Parkinson's disease, Alzheimer's disease, Charcot-Marie-Tooth disease, frontotemporal 

dementia, vascular or Lewy body dementia, amyotrophic lateral sclerosis, multiple 

sclerosis, toxic or giant axon neuropathy or in severe burns [70–73]. 

 Neurofilaments belong to class IV of intermediate filaments and together with 

microfilaments and microtubules participate in the formation of the neuronal cytoskeleton 

[70,71]. 

 In addition to the structural role, neurofilaments contribute to the modulation of the 

nerve impulse, being also involved in increasing and maintaining the axonal diameter 

[74]. The activity of neurofilaments is modulated by various oxidations, glycosylations, 

phosphorylations, nitrations, ubiquitinations, polymerizations, assemblies and 

disassembly - physical and biochemical processes to which they are subjected during their 

transport, from the site of synthesis located in the neuronal body to the axonal level where 

they perform the main activity [74–76]. 

 Based on physical, chemical and recently genetic characteristics, neurofilaments 

have been differentiated into 5 subunits. Three of them, present both centrally and 

peripherally, are named according to their molecular weight - low (NF-L), medium (NF-

M) and heavy (NF-H). A fourth subunit is added to them, α-internexin – in the central 
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nervous system, respectively peripherin – in the peripheral nervous system [70,74,77–

79].  

 

pNF-H 

 pNF-H results from the phosphorylation of the largest subunit of neurofilaments 

(NF-H), a process that gives it a high degree of stability against the various surrounding 

proteolytic enzymes [74,76,80]. It is ubiquitous in neurons, with a maximum 

concentration at the axonal level [70,81].  

 In diseases that affect neuronal integrity, their structural components are released 

and this fact implicitly leads to the appearance of the pNF-H subunit in the interneuronal 

space from where it reaches the CSF and then the serum [70,72,82]. 

 The degree of damage to the neurons is directly proportional to the amount of pNF-

H and other structural elements released in the CSF, an amount that has been correlated 

in various clinical studies with the diagnosis, the evolution of the disease and the 

effectiveness of the treatment administered [75,83]. 

 The change in the level of neurofilaments depends not only on the cause that 

determined the degradation and destruction of neurons, but also on the degree of disease 

progression, the severity of symptoms and the time elapsed from the onset of symptoms 

to the initiation of specific treatment [71,75,83,84]. 

 With the advent of disease-modifying treatments, the need to find biomarkers to 

increase the accuracy of the prognosis, follow the evolution, monitor the response to 

treatment and compare the effects of the different treatments administered, and for 

neurodegenerative diseases, neurofilaments have been increasingly often taken into 

account, being exclusively neuronal structural components, which appear in small 

quantities in the CSF as a result of the normal metabolism of the neuronal cell, but which 

are released in quantities corresponding to the size of the damage in case of neuronal 

injury or death [71,84]. 

 Increased stability and high axonal abundance are two particularly important 

aspects in choosing neurofilament pNF-H subunit level to analyze as a biomarker of 

neuronal damage [76,80]. 

 

 

 



 
 

 

13 

 

 Serum creatinine 

 Serum creatinine is considered a marker of muscle activity in various 

neuromuscular diseases, its level being in direct correlation with the mass of muscle tissue 

existing in the body and with muscle metabolism (for example in Duchenne or Becker 

muscular dystrophy, in Kennedy's disease or in other diseases that develops with muscle 

atrophy regardless of etiology)[85–87]. 

 Serum creatinine is not influenced by diet, circadian rhythm, physical effort or other 

biological constants, being directly correlated with muscle metabolism. 

 Serum creatinine is a more useful parameter in assessing the degree of muscle 

utilization than creatine kinase, which correlates better with the degree of muscle 

breakdown [88]. 

 In neurodegenerative diseases, a decrease in the level of serum creatinine suggests 

the progression of the degree of muscle denervation, and the degree of decrease of this 

parameter correlates with the severity of the condition [89,90]. 

 Different studies in patients with SMA have looked at creatinine level as a 

biomarker for the decrease in muscle activity through the progressive denervation that 

occurs during the natural course of the disease and the changes in serum level that occur 

during the introduction of specific disease-modifying therapy [11,47,48,91]. 

 

 Nusinersen (Spinraza) 

 Nusinersen (Spinraza) is the first drug approved for the etiological treatment of 

SMA 5q. The active substance is an antisense oligonucleotide that prevents premature 

splicing of the messenger RNA, including exon 7 in the transcription process of the SMN2 

gene that codes for the SMN protein and causing the production of a protein necessary 

for the survival of motor neurons corresponding in length and functionality to stop 

neuronal degradation [92,93]. 

 Treatment is primarily aimed at maintaining or even improving motor function and 

improving respiratory function and implicitly the quality of life. 

 The medicine is conditioned in the form of an injectable solution, for intrathecal 

administration, packed in 5 ml vials, containing 12 mg of active substance at a 

concentration of 2.4 mg/ml. 

 The recommended dose for each administration is 5 ml (12 mg), and the treatment 

scheme includes two parts: the loading period – with the administration of the drug on 
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days 0, 14, 28 and 63 from the initiation of therapy and the maintenance period, which 

involves the administration a dose of medicine once every 4 months (± 2 weeks) 

throughout life [94]. Before administration, it is recommended to extract 5 ml of CSF to 

keep the intracranial pressure constant [95].  

  

 Working hypothesis  

 SMA is part of the category of neurodegenerative diseases that evolve with the 

progressive destruction and death of motor neurons, accompanied by the related 

consequences: the release of neuronal structural components in the neuronal interstitial 

space, in the CSF and in the serum, the impairment of motor function and muscle mass.  

 The level of released neurofilaments – and implicitly of their pNF-H component, 

as the structure existing exclusively at this level, should be directly proportional to the 

amount of damaged neurons and thus represent a way of quantifying the degree of 

neuronal damage. From the interstitial space, the neurofilaments reach the CSF and from 

there the serum, and the level of detection depends on the amount released as well as on 

the metabolic processes undergone and plasma clearance. 

 The impairment of the motor function is observed through the evolution of the 

scores on the functional motor assessment scales, and the degree of atrophy of the muscle 

mass is reflected by the serum creatinine level. 

 With the introduction of disease-modifying treatment, the destruction of neurons is 

halted, the level of pNF-H neurofilaments in the CSF should be maintained at a basal 

minimum due to normal neuronal metabolism, motor performance should improve as 

functional recovery programs are applied, and muscle mass would increase, thus 

increasing the serum creatinine level in accordance with the degree of muscle activity.

 Monitoring parameters for motor function (score obtained on the scales) and for the 

intensity of muscle activity (serum creatinine level) should evolve inversely proportional 

to markers of neuronal degradation (pNF-H level in CSF and serum). At baseline 

assessment, increases in neurofilaments should be consistent with decreases in motor 

scores and serum creatinine, and with nusinersen treatment, neurofilaments should 

decrease and motor performance and serum creatinine should improve. 
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 General objectives 

- Determination of the level of pNF-H neurofilaments in the CSF according to age, 

type of disease, number of copies of the SMN2 gene and stage of treatment (at 

initiation, during the first year of the maintenance period, respectively after one, 

two and three years of treatment ) for the pediatric population treated with 

nusinersen in CNCRNC Dr. Nicolae Robănescu in order to establish reference 

levels for pediatric patients with SMA in Romania 

- Analyzing the evolution of pNF-H neurofilament levels in CSF during different 

treatment periods  

- Monitoring the evolution of SMA through the prism of the level of 

neurofilaments as a biomarker of disease progression 

- Establishing the importance of the pNF-H level as a predictive factor for 

evaluating treatment response 

 

Secondary objectives 

 - Evaluation of the patients' functional status reflected by the scores obtained on the 

motor functional scales in different periods of treatment  

 - Analyzing the evolution of pNF-H neurofilament levels in serum and serum 

creatinine in different treatment periods  

 - Establishing the correlations between the level of pNF-H neurofilaments in the 

CSF, the value of the scores obtained on the motor assessment scales, the level of 

pNF-H neurofilaments in the serum and serum creatinine  

 - Correlation of the values and the evolution of the pNF-H neurofilament level in 

the CSF for the use of this parameter as a predictive marker on the treatment results 

over time 

 - Determination of the effectiveness of the administered treatment according to the 

evolution of the pNF-H neurofilament level compared to the initial moment 

 

General research methodology 

 During the doctoral research, groups of patients diagnosed with SMA, treated with 

nusinersen through the National Program for Rare Diseases - Treatment with Nusinersen 

for Spinal Muscular Atrophy, between October 2018 and November 2023, were analyzed 

in the National Clinical Center for Neuropsychomotor Recovery Dr. Nicolae Robănescu 
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in Bucharest - monospeciality clinical hospital, dedicated to the neuropsychomotor 

recovery of the child, a unique structure in Romania, at the European level, with 

addressability throughout the country. 

 All eligible patients were included in the studies under strict inclusion and exclusion 

criteria. 

 The studies were approved by the Ethics Commission of the National Clinical 

Center for Children's Neuropsychomotor Recovery "Dr. Nicolae Robănescu" (agreement 

no. 7464 of October 1, 2018). 

 Informed consent was obtained from the legal guardians of all patients included in 

the studies, according to local regulations and the World Medical Association Declaration 

of Helsinki, revised in 2000 in Edinburgh. 

 All data processing complied with GDPR regulation 697/2016. 

 The general criteria for inclusion in the studies were: pediatric patient, the existence 

of a biallelic mutation or a heterozygous mutation and deletion of the SMN1 gene in the 

5q13 region confirmed by genetic analysis, the existence of at least 2 copies of the SMN2 

gene, the absence of any acute condition that would was able to additionally influence the 

level of pNF-H neurofilaments, the admission to the national nusinersen treatment 

program, the administration of the treatment and the performance of clinical, paraclinical 

and functional evaluations before each administration with the specialized staff and 

equipment of CNCRNC Dr. N. Robănescu. 

 The main exclusion criteria were: the administration of another disease-modifying 

treatment, the presence of another condition known for the destruction of motor neurons 

with an increase in pNF-H levels in CSF and serum, the existence of additional conditions 

that could have influenced motor performance, non-compliance with the standard scheme 

of treatment with nusinersen. 

 The clinical evaluation before the administration of each dose of treatment was 

carried out by a multidisciplinary team of CNCRNC Dr. N. Robănescu. Pediatric 

neurologists, anesthetists and pediatricians specialized and experienced in the evaluation 

of patients with SMA corroborated the clinical parameters, the results of the functional 

parameters provided by physiotherapists specialized in the evaluation of patients with this 

condition and the paraclinical parameters resulting from the processing of biological 

samples in the accredited laboratory of CNCRNC Dr. N Robanescu. 
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 Assessments were performed by the same individuals to reduce the risk of error in 

analyzes and data interpretation, and drug administration was performed after obtaining 

multidisciplinary team agreement.  

  The demographic, anthropometric, clinical and paraclinical data of the 

participants, which were used in the studies, were taken from the observation sheets of 

the patients and from the data currently recorded in the computer program of CNCRNC 

Dr. N. Robănescu. 

 Physiotherapists from CNCRNC Dr. N. Robănescu, specialized in the assessment 

of patients with SMA, evaluated the motor skills of the subjects included in the studies 

using functional scales specific to the type of SMA. The evaluations were performed by 

the same team of specialists to minimize the degree of subjectivity. 

 In the conducted studies, data obtained on the CHOP-INTEND scale were used for 

patients diagnosed with SMA type 1 and HFMSE for those with types 2 and 3. 

 The CHOP-INTEND scale has been validated for patients aged 3 months to 2 years 

with severe motor impairment and respiratory difficulties [96]. The scale evaluates the 

strength and mobility of the axial and peripheral muscles with the help of 16 requirements 

of varying degrees of difficulty assessed with a score from 0 to 4 points (when the 

requirement is fulfilled correctly), the maximum score that can be obtained on this scale 

for the complete fulfillment of requirements being 64 points [15,97,98]. In this way, 

spontaneous movements, the grip reflex, the degree of flexion and extension of the limbs, 

the stability of the head are appreciated [15]. 

 The Expanded Hammersmith Functional Motor Scale (HFMSE), introduced in the 

evaluation of patients with SMA since 2005, is a modified Hammersmith scale for use in 

both type 2 and type 3 SMA, for patients with late onset of symptoms [15,99].   

 The scale has a maximum score of 66 points which can be obtained by correctly 

fulfilling 33 requirements each assessed with a maximum of 2 points [69,100].  

 Both the absolute values recorded and those relative to the maximum score possible 

on the motor scales (yield) were used to be able to compare the performances achieved 

by the patients. 

 

Determination of pNF-H neurofilament level in CSF  

 CSF samples were collected just before each intrathecal administration of 

nusinersen by lumbar puncture, in a sterile container, in an amount of approximately 5 
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ml, corresponding to the volume of drug administered, according to the drug 

administration protocol. 

  The level of pNF-H was determined by the ELISA (the enzyme-linked 

immunosorbent assay) technique, according to the working instructions in the leaflet 

issued by the manufacturer of the reagent kit, intended for the in vitro quantitative 

determination of pNF-H neurofilaments in CSF or serum samples of human origin and 

which is part of the category of medical devices for in vitro diagnosis. 

  

Determination of serum pNF-H and creatinine levels 

 Blood samples for laboratory analysis for monitoring and paraclinical evaluation of 

patients were collected before each dose of nusinersen.  

 The level of pNF-H was determined by the ELISA technique, on the same type of 

kit as that used to determine the level of pNF-H neurofilaments in CSF. 

 Serum creatinine level was determined by the improved Jaffe method, based on the 

reaction of creatinine with sodium picrate. 

 

 The control group 

 The studies conducted did not have a separate control group. The data obtained just 

before the start of the treatment were used as a "control group" to follow the results 

obtained at different moments of the treatment evaluated relative to these values. 

 Neurofilament pNF-H levels in CSF and serum were interpreted as absolute values 

and compared to values obtained just before the first dose of nusinersen to assess 

treatment response. 

 The approach allowed assessment of the natural progression of this condition prior 

to administration of disease-modifying treatment, providing a baseline for comparison 

with outcomes over time. 

  

 Changes in pNFH Levels in Cerebrospinal Fluid and Motor Evolution after 

the Loading Dose with Nusinersen in Different Types of Spinal Muscular Atrophy 

(Study 1) 

  The first study started from the hypothesis that the loading period with nusinersen 

can be considered to have the greatest influence on the level of neurofilaments in the CSF, 

with its marked reduction as a result of providing a sufficient amount of SMN protein, 



 
 

 

19 

 

thus eliminating the cause of the abnormal destruction of motor neurons, an aspect 

clinically reflected by increasing scores on the motor assessment scales.  

 The aim of this retrospective study was to analyze the changes in pNF-H 

neurofilament levels in CSF after the loading period with nusinersen, corresponding to 

the first 6 months of disease-modifying treatment, in different types of SMA, in patients 

with different phenotypes and with therapy initiated at different ages compared to 

baseline. Additionally, we analyzed the relationship between the results obtained on the 

motor assessment scales and the evolution of the pNF-H level in the CSF as an expression 

of the reduction of motor neuron degradation. 

 The study included 38 patients with a genetically confirmed diagnosis of SMA, 

accepted in the national program of rare diseases for treatment with nusinersen between 

October 2018 and July 2021 within the CNCRNC Dr. N. Robănescu - all patients who 

had completed 6 months since initiation nusinersen treatment. The results obtained at two 

time points were analyzed: before the initiation of treatment (time T0) and before the 

administration of the 5th dose of treatment (time T1), the dose with which the 

maintenance treatment begins. 

 The study compared the results obtained for different categories of patients, 

according to age, type of SMA and number of SMN2 copies, to determine the category 

with the best response to treatment. 

 The mean age according to the type of SMA was between 2.07 and 215 months, 

with the youngest patients being those with SMA type 1. 

 The values of the pNF-H level in the CSF before the initiation of treatment varied 

greatly between different categories of patients. The lowest value of pNF-H was 0.035 

ng/ml and was obtained in a 104-month-old patient with 3 copies of the SMN2 gene 

diagnosed with SMA type 2, and the highest value of 3.321 ng/ml was recorded in a 

patient aged 3.63 months, with 2 copies of the SMN2 gene, diagnosed with SMA type 1. 

 The wide range of pNF-H values observed in the study is also remarkable, with the 

highest levels of pNF-H being obtained before initiation of treatment, in the most severe 

forms of the disease and in patients with the lowest scores on functional motor scales, 

similar to the results of other studies in the literature [32,101,102]. 

 Observations show that treatment with nusinersen can lead to improvements in 

motor function and a decrease in pNF-H levels for pediatric SMA patients [103]. The 

effectiveness of the treatment is proven by slowing down or stopping the progression of 
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the disease (based on clinical symptoms) and by changes in the scores obtained by the 

patients on the motor scales.  

 The correlation between CSF pNF-H level and SMA-specific motor assessment 

scores during the first 6 months of treatment was negative, meaning that the decrease in 

pNF-H level during treatment progressed with the increase in motor functional 

assessment scales scores, although the correlation was statistically significant only in 

SMA type 2. 

 Considering that the dose of nusinersen administered according to the drug protocol 

indicated by the manufacturer compensates for the lack of the necessary SMN protein and 

covers the necessary for the survival of motor neurons, to compare the effectiveness of 

the treatment taking into account the different functional motor scales applied to the 

patients, the percentage variation of these parameters (pNF-H level and relative score on 

functional scales) was more relevant than the difference in absolute values for these 

parameters. 

 The yield of changes in the pNF-H level is represented by the percentage of the 

difference between the initial level of neurofilaments compared to the level obtained after 

6 months of treatment, and for the motor scales it is represented by the percentage of the 

difference between the relative value of the score 6 months after the initiation of treatment 

compared to initial relative value (value relative to the maximum value of the scale). 

 After six months of treatment with nusinersen, motor function showed 

improvement for the majority of patients included in the study, as demonstrated by 

increased scores on motor function scales, while only a few patients showed no change 

in scores or a decrease in them.  

 The findings suggest that most patients showed a positive response to nusinersen 

treatment in terms of increased motor function scores and decreased CSF pNF-H levels. 

 

 The dynamic of changes of pNFH levels in the CSF compared with the motor 

scales’ scores during three years of nusinersen treatment in children with spinal 

muscular atrophy types 2 and (Study 2) 

  In this study, changes in the level of pNF-H neurofilaments in CSF were followed 

during three years of maintenance treatment with nusinersen, and these changes were 

analyzed compared to the values at the beginning of the treatment and at the beginning of 
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the maintenance period for different ages and types of SMA, and the results were 

evaluated in terms of the performances obtained on the motor functional scales. 

 The aim of this retrospective study was to analyze the changes in the level of pNF-

H neurofilaments in the CSF during the first year of treatment and three years after the 

initiation of treatment with nusinersen, in the pediatric population with late onset of 

clinical manifestations - in types 2 and 3 of SMA, in patients with different phenotypes 

and at different ages, compared to baseline. Additionally, we analyzed the relationship 

between the results obtained on the motor assessment scales and the evolution of the pNF-

H level in the CSF as an expression of the reduction of motor neuron degradation. 

 The batch of this monocentric retrospective study consisted of 18 patients 

diagnosed with spinal muscular atrophy and treated with nusinersen between October 

2018 and July 2023 through the National Program for Rare Diseases carried out within 

CNCRNC Dr. Nicolae Robănescu. 

 All patients diagnosed with type 2 or 3 SMA with at least 13 doses of treatment 

administered by July 2023 were included in the study. 

 In the study, the level of pNF-H neurofilaments in the CSF was determined three 

years after the start of nusinersen treatment, at 38 months. The results were analyzed both 

according to age, sex, type of SMA and the number of copies of the SMN2 gene, as well 

as from the point of view of the evolution of the scores on the functional motor scales 

compared to the values obtained in the first year of treatment. 

  From the analysis of the obtained data, no statistically significant correlations 

were observed between the level of pNF-H in the CSF at the 13th injection and that at the 

time of initiation of treatment or with the type of SMA, the number of copies of the SMN2 

gene and the gender of the patients. 

 Most patients showed improvements in functional scores. The dynamics of motor 

evolution according to the yields obtained on the evaluation scales in three years of 

treatment, in absolute value and relative to the moment of initiation, did not depend 

significantly on the sex, age or type of SMA of the patients. 

 The most rapid decrease in pNF-H levels was achieved in the first six months of 

nusinersen treatment, as was also observed in studies in adult patients with late-onset 

SMA (types 3 and 4) as evidence of efficacy treatment in slowing or even stopping 

neuronal degradation due to the existence of an insufficient amount of SMN protein 

necessary for the survival of motor neurons [104]. 
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 The scores obtained on the motor rating scales suggest a halt in motor function 

degradation or even a gradual improvement in performance over time and continued 

treatment. 

 The rate of decrease in pNF-H does not correlate with a faster improvement in 

motor performance at any of the time points studied (6, 10 or 38 months after initiation 

of treatment), the level of pNF-H in the CSF cannot be considered as predictive factor of 

patients' evolution, but only as a diagnostic criterion, compared to studies performed for 

patients with lateral spinal atrophy, in which pNF-H level had both diagnostic and 

prognostic value [105]. 

 The non-significant correlation of the decrease in CSF pNF-H level with the 

increase in motor scores may be due to the small group of patients, the varied time interval 

between the onset of symptoms and the initiation of therapy, the different degrees of 

functional motor impairment at the initiation of treatment, and the uneven compliance of 

patients to perform individual physical therapy, an aspect with a significant role in the 

functional recovery of these patients [44]. 

 The results obtained are similar to those described in the analyzes of the level of 

pNF-H in CSF from the SHINE, NURTURE, EBRACE, ENDEAR and CHERSH studies 

regarding the control groups (healthy population aged 0 to 20 years) and the population 

diagnosed with SMA (before of treatment and with or without treatment) [106]. 

 During the initiation period in SMA types 2 and 3, the evolution of the level of 

neurofilaments is similar to that described in studies on adult patients, totally different 

from the results obtained in patients with SMA type 1, for which there is a more 

pronounced rate of decrease in the level of neurofilaments. pNF-H neurofilaments in CSF 

under nusinersen treatment relative to the value at the time of initiation of therapy. The 

amount of pNF-H present depends on the number of viable neurons that are affected and 

the rate of degradation and clearance of pNF-H from the CSF [104,106,107]. 

 The highest pNF-H neurofilament values were observed before initiation of 

treatment and the mean value per patient subgroup was higher for patients with SMA type 

2 compared to those with type 3, similar to data from other studies on the effects of 

nusinersen on the pediatric population with SMA [104,106].  

 On the other hand, compared to the results of other studies, patients with 2 copies 

of the SMN2 gene had lower mean values of pNF-H in CSF compared to those with more 

than 2 copies of the SMN2 gene, a fact probably also influenced by the number almost 
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twice as many patients with more than 2 copies of the SMN2 gene but belonging to type 

2 SMA, consistent with the age of onset of symptoms, which emphasizes that the SMN2 

gene cannot provide the required amount of SMN protein regardless of the number of 

copies existing of this gene. 

 The fact that the youngest patient had the highest pretreatment pNF-H value 

suggests a more accelerated rate of neuronal destruction in the first months of life, 

emphasizing the importance of neonatal screening for SMA with the advent of disease-

modifying therapy . 

 Increased pNF-H levels have been observed both in multiple sclerosis patients 

during periods of disease activation and correlated with disease progression in 

amyotrophic lateral sclerosis. However, it could be helpful in the differential diagnosis of 

these diseases in patients with late-onset forms of SMA [108,109]. 

 Monitoring pNF-H levels in SMA provides information on the effectiveness of 

treatment in halting neuronal degradation due to SMN protein deficiency, but may also 

signal the onset of an associated condition affecting motor neurons before other clinical 

manifestations. 

 During treatment with nusinersen in the pediatric population diagnosed with less 

severe forms of SMA (types 2 and 3), the level of pNF-H in CSF decreased significantly, 

especially during the loading period. After that period, pNF-H remained at a low level 

compared to baseline values in the absence of any external event that could have caused 

motor neuron damage or degradation from other causes. 

 The decrease in pNF-H is accompanied by the improvement of scores on motor 

rating scales. However, the two parameters do not correlate significantly, at least for the 

studied group and time points of the three years of nusinersen treatment. 

 The increase of the pNF-H level in the CSF in the conditions of some clinical types 

with the late onset of SMA in children and adolescents could be part of the diagnostic 

criteria regarding the acute state of motor neuron degradation and the viable capital of 

affected neurons. 
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 Impact of Nusinersen on Neurofilament, Creatinine Levels, and Motor 

Function in Pediatric Spinal Muscular Atrophy Rehabilitation A Biomarker 

Analysis (1) (Study 3) 

  The primary objectives of this study were to analyze the evolution of functional 

(motor function scale scores) and paraclinical (CSF and serum pNF-H level and serum 

creatinine) biomarkers during treatment with nusinersen, for the pediatric population 

diagnosed with different types of SMA and comparing the respective results with those 

at the initiation of treatment and at the beginning of the loading period. 

 This retrospective study was carried out on a group of 69 patients treated for SMA 

in CNCRNC Dr. Nicolae Robănescu between November 2020 and November 2023 

through the National Program for Rare Diseases - Treatment with Nusinersen.  

 The study included all patients for whom paired serum and CSF samples, collected 

before intrathecal administration of the drug, at different stages of treatment (before 

initiation - first dose, before the start of maintenance treatment - the fifth dose, one, two 

or three years after the initiation of therapy - the 7th, 10th and 13th doses of the drug, 

respectively). 

  Clinically, scores on motor rating scales improved. From a paraclinical point of 

view, favorable changes were observed in the levels of investigated parameters, such as 

serum creatinine (indicative of muscle atrophy) and pNF-H levels in CSF and serum 

(reflecting motor neuron damage). 

 The highest levels of pNF-H in CSF were observed before initiation of nusinersen 

treatment at all time points analyzed. This trend was consistent across different types of 

SMA and for patients with varying numbers of copies of the SMN2 gene [104,110–114].  

 Patients with SMA type 1 and those with 2 copies of the SMN2 gene showed the 

highest levels of pNF-H, consistent with findings in the literature on disease severity 

factors [104,111]. 

 The most significant decrease in CSF pNF-H levels occurred between initiation of 

treatment and initiation of maintenance therapy, regardless of SMA type or SMN2 gene 

copy number. During the maintenance period, CSF pNF-H levels generally remained 

lower than baseline, except for two patients with SMA type 1 and 2 copies of the SMN2 

gene, whose values increased well before 7th and 10th drug doses, but whose subsequent 

trends aligned with those of the patient groups to which they belonged. 
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 The serum level of pNF-H also had the highest values at treatment initiation for 

patients with 2 copies of the SMN2 gene compared to those with 3 or 4 copies. However, 

the group of patients with SMA type 2 recorded the highest values of this parameter, 

while those with SMA types 1 and 3 had similar values. 

 Serum creatinine, indicative of muscle atrophy, decreased during the first 6 months 

of nusinersen treatment but increased during maintenance treatment, particularly in 

patients with SMA type 2 and 3. Patients diagnosed with SMA type 1 showed fluctuations 

relatively minor, although the level continued to rise after three years of treatment, 

aligning with findings on muscle atrophy studies in previous research [48,115,116]. In 

addition, patients experienced increases in serum creatinine levels after 3 years of 

nusinersen treatment compared to baseline, specifically correlated with decreased muscle 

wasting and increased muscle metabolism, similar to findings in the literature [47,117]. 

 Monitoring the level of pNF-H neurofilaments provides information on the 

evolution of motor neuron degeneration, and serum creatinine, together with assessment 

on specific motor scales, reflects the degree of muscle activity. 

 Decreased levels of neurofilaments in serum and CSF demonstrate slowing or even 

halting of abnormal neuronal degradation. The increase in serum creatinine is due to the 

intensification of involuntary (eg, breathing or swallowing) and voluntary muscle activity 

(assessed by scores on functional motor scales) as a result of improved neuronal 

functionality. 

 The unfavorable evolution of these parameters (increased pNF-H level and 

decreased creatinine level or functional scores) translates into a lack of response to the 

chosen treatment strategy.  

 A favorable evolution of the level of neurofilaments, but a stagnation or a decrease 

in the level of creatinine and the scores obtained in the functional evaluations may suggest 

an effective drug treatment, but a lack of compliance of the patient to the adjuvant therapy 

or the need for its intensification by increasing the number of physical therapy sessions, 

the duration of the sessions or the complexity of the exercises performed. 
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 Importance of neurofilament pNF-H level in cerebrospinal fluid as a predictive 

factor and for monitoring the response to nusinersen treatment for spinal 

amyotrophy in the pediatric population at different time periods correlated with 

other clinico-biological biomarkers (Study 4) 

 In this retrospective study, the objectives of the doctoral research are addressed for 

the entire group of pediatric patients diagnosed with SMA 5q treated by the National 

Program for Rare Diseases - Treatment with Nusinersen for Spinal Muscular Atrophy, 

between October 2018 and November 2023, in CNCRNC Dr. Nicolae Robănescu from 

Bucharest. 

 The study compared the changes in pNF-H neurofilament levels in CSF and serum, 

serum creatinine and scores on functional motor assessment scales over certain time 

periods, across SMA types, for different numbers of SMN2 gene copies and with initiated 

treatment at various ages over a period of maximum three years of treatment. 

 Thus, the importance of determining the level of pNF-H in the CSF in monitoring 

the response of patients to treatment and the use of this biomarker as a predictive factor 

of the evolution of patients on motor functional scales were pursued. 

 The final study group consisted of 76 patients, and analyzes were performed from 

all available CSF and serum samples for the determination by the ELISA method of pNF-

H neurofilament levels, and the evolution of neurofilaments, serum creatinine and motor 

scale scores was followed in certain points in time and for different periods, both 

individually and in groups of patients, depending on the type of SMA and the number of 

copies of the SMN2 gene. 

 The time points analyzed were: T0 – before treatment initiation (first dose I1), T1 

– before the start of the maintenance period (fifth dose I5, 6 months after treatment 

initiation), T2 – sixth treatment dose I6 , 8 months after initiation, respectively T3, T4 

and T5 – one, two or three years after the initiation of therapy – doses 7 (I7), 10 (I10) and 

13 (I13) of the drug respectively. 

 From the analysis of the results obtained following the administration of nusinersen 

treatment for three years, the majority of patients had a favorable evolution. Motor rating 

scale scores improved due to increased muscle mobility and strength, serum creatinine 

increased due to more intense muscle activity, and CSF and serum pNF-H neurofilament 

levels decreased due to decreased degradation motor neurons due to the increase in the 
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amount of SMN protein necessary for the survival of these neurons, similar to the results 

of other studies in the literature [109,110,118].  

 The most important decrease in the pNF-H level in the CSF was observed during 

the loading period with nusinersen, in the first 6 months after the initiation of treatment, 

and in the maintenance period the pNF-H level in the CSF was for most patients at values 

below a level basal probably due to normal neuronal metabolism [104,111]. 

 The serum pNF-H level followed the same course of gradual decline during 

treatment and stabilized below a trough value for most patients at a slower rate than the 

CSF level. 

 Serum creatinine level increased with increasing muscle activity and was 

accompanied by improvement in scores on motor rating scales [47,115,117]. 

 The level of pNF-H neurofilaments in the CSF at the start of treatment had higher 

values the lower the number of copies of the SMN2 gene and the type of SMA, so in the 

most severe forms of the disease and as close as possible to the onset of symptoms, when 

the number of viable motor neurons was greater, as was the requirement of SMN protein 

for their survival [104,111,113,114]. 

 Determination of a higher CSF pNF-H level at baseline led to the observation of 

higher serum pNF-H levels and evolved with a more pronounced decrease during 

treatment [119,120].  

 Correlations for assessing the evolution of patients under nusinersen treatment were 

observed both between the absolute values of the pNF-H level in the CSF and the other 

parameters studied (age, type of SMA, number of copies of the SMN2 gene, scores 

obtained on the motor scales, creatinine levels serum and pNF-H neurofilaments in the 

serum), especially between the variations of the values obtained in different periods of 

treatment compared to the values at the beginning of the treatment or at the beginning of 

the maintenance period, in absolute values or in values relative to the initial value [120–

123]. 

 The treatment-assisted increase in SMN protein level resulted in decreased neuronal 

degradation and improved motor performance even more so when the damage was 

initially more severe, reflected by a higher level of pNF-H in CSF and serum.  

 In the most severe form of the disease – SMA type 1, obtaining a high level of pNF-

H in the CSF at the initiation of treatment could be considered a negative predictive factor 

for the returns on the motor scales throughout the treatment, and obtaining high values of 
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pNF-H neurofilament levels in CSF throughout treatment suggests a lower yield at two 

years of treatment. In SMA type 2 and 3, higher baseline pNF-H in CSF was associated 

with better returns over time and higher serum creatinine levels. 

 The less pNF-H neurofilaments in CSF decreased over the course of treatment, the 

better returns were achieved at two and three years of treatment, with little variation over 

time in CSF pNF-H levels suggesting an evolution better motor skills in two and three 

years of treatment. Greater variation in CSF pNF-H levels during both the loading and 

maintenance periods was associated with greater returns over time for late-onset forms 

and greater increases in serum creatinine ( type 2 and 3 of SMA). 

 Patients who recovered greatly in muscle activity during the loading period had a 

more modest increase in motor activity during the maintenance period. 

 Regardless of SMN2 gene copy number, younger age at treatment initiation was 

associated with more severe forms of the disease, higher CSF pNF-H values, and greater 

variations in neurofilaments during treatment, with greater increases in yield and 

creatinine level over time, the variation in pNF-H level during the loading period being 

directly correlated with the variation in yield at the time points analyzed, while a smaller 

variation in CSF pNF-H during the maintenance period resulted in yields higher on the 

motor scales. 

 The observation of higher variations in serum pNF-H level at 6 months, one year 

and two years of treatment was associated with a higher serum creatinine level at two 

years of treatment, suggesting that the variation of serum pNF-H level in the time of 

nusinersen maintenance treatment from baseline could be a predictive factor for the 

intensity of muscle activity at two years of treatment. 

 

 Limitation 

 The results of the studies are limited by the possibility of the existence of additional 

factors, independent of the underlying disease, which could interfere both with the level 

of pNF-H and with the performances on the functional motor scales, with a particular role 

attributed to the degree of neuromuscular degradation at the time of treatment initiation 

and the individual ability to supplement drug treatment with adjuvant treatments 

(kinesiotherapy). Age differences within the same type of SMA were significant, with the 

age of initiation of treatment dependent on the availability of the newly approved drug 

and not on the age of onset of symptoms or speed of diagnosis. 
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 The methods used to assess patient response to nusinersen treatment for spinal 

muscular atrophy are limited by the inherent aspects of each biomarker analyzed. 

Furthermore, the study faces the hurdles of analyzing the evolution of a rare disease due 

to the small size of the patient cohort. 

 Assessment of motor performance relies on patient cooperation, which can be 

challenging, particularly in pediatric populations with fluctuating moods and health 

conditions. In addition, supplementing treatment with adjunctive therapies such as 

physical therapy introduces additional complexity. Physical therapy is essential in 

improving various aspects of motor function, including posture, muscle tone and strength 

as well as patients' mobility [44]. These aspects translate into an improved quality of life 

for patients and their families, emphasizing the importance of a holistic approach to SMA 

management. 

 Paraclinical parameters, although less influenced by external factors or patient 

cooperation, are not specific to the type of disease and are influenced by individual 

metabolism. 

  

 Final conclusions and personal contributions 

 In the doctoral studies carried out in the four years, I managed to include a number 

of 76 patients with spinal amyotrophy treated with nusinersen, an important number given 

that this condition is part of the category of rare diseases, and the treatment with 

nusinersen was approved from 2016 to worldwide and from 2018 in Romania. 

 Research during the doctoral period made a major contribution to understanding the 

degree of damage to motor neurons due to the lack of SMN protein depending on the 

patient's phenotype, as well as the importance of nusinersen administration for slowing 

down or even stopping neuronal degradation by determining the values of the pNF-H 

level in the CSF according to the patient's age, the type of AMS and the number of copies 

of the SMN2 gene before the initiation of therapy and during the first three years of 

treatment. 

 The determination of a maximum level of pNF-H during the maintenance period, a 

level probably due to normal neuronal metabolism, gives the possibility of using this 

parameter to establish the activity stage of the disease and the size of the existing neuronal 

capital, particularly useful information that gives the level of pNF-H in CSF value as an 
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indicator of the urgency of initiating specific treatment and as a biomarker for 

response monitoring to the treatment. 

 Establishing correlations between the level of pNF-H neurofilaments in CSF, the 

value of the scores obtained on the motor assessment scales, the level of pNF-H 

neurofilaments in serum and serum creatinine suggest the value of pNF-H as a biomarker 

of disease progression. 

 One of the most important aspects resulting from the data analysis was the 

possibility of using the degree of variation of the pNF-H level from different periods of 

treatment (loading period, first year of treatment, etc.) as a predictive factor for motor 

evolution for two or three years of treatment from the point of view of the functional 

status – reflected in the degree of increase in the yield obtained on the motor scales and 

the level of serum creatinine for the assessment of the intensity of the motor activity. 

 Correlating the evolution of functional parameters (scores on motor scales and 

serum creatinine level) with pNF-H levels in CSF and serum to evaluate the effectiveness 

of the drug treatment scheme combined with adjuvant therapy to support respiratory and 

digestive functions and programs of physical therapy, physiotherapy or occupational 

therapy represent a special personal contribution in personalizing the patient's 

treatment to obtain the best results over time. 

  The studies carried out contribute significantly to the understanding of the 

spectrum of the disease and the response to treatment, providing new perspectives in the 

approach of the pediatric patient with SMA and underlining the importance of introducing 

the determination of the pNF-H level as a routine analysis for the evaluation of these 

patients. 

 The comparative analysis of pNF-H levels in CSF and serum and the variations 

from different periods correlated with the yields obtained and with the serum creatinine 

level creates the opportunity for comparative assessment of the response with other 

types of drug treatment and with combinations of disease-modifying treatments. 

 The obtained results need to be validated for larger groups of patients and verified 

for longer periods of time, thus opening the doors to a new era for personalized treatment 

in SMA. The real assessment of patients with SMA involves the correlation of all clinical 

data and the monitoring of any available biomarkers for a correct assessment of the 

progress recorded and for the dynamic personalization of therapy according to the needs 

and possibilities of each patient.  
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