

Carol Davila" University of Medicine and Pharmacy Quality Assurance Committee

DISCIPLINE SHEET

1. Data about the programme

1.1.	"CAROL DAVILA" UNIVERSITY OF MEDICINE AND PHARMACY
1.2.	FACULTY OF MEDICINE
1.3.	DEPARTMENT I – FUNCTIONAL SCIENCES
1.4.	DISCIPLINE: BIOPHYSICS
1.5.	DOMAIN OF STUDY: HEALTH – Sectorally regulated within the European Union
1.6.	STUDY CYCLE: LICENCE
1.7.	STUDY PROGRAME: MEDICINE – ENGLISH MODULE

2. 2. Data about discipline

	2. 2. Data about discipline						
2.1.	Name of the discipline in the educational plan: Biophysics						
2.2.	Disciplin	e code:	DF I 2 S1M				
2.3.	Disciplin	e type (1	FD/SD/CD): FD				
2.4.	Disciplin	e regim	en (MD/OPD/): M	ID			
2.5.	The hole	der of t	he course activiti	ies: Assoc. Pi	of. Dr. Octavian	Călinescu, Lecturer Dr.	
	Ramona Mădălina Babeș						
2.6.	The holder of the seminar activities: Assoc. Prof. Dr. Octavian Călinescu, Lecturer Dr.						
	Ramona Babeş, Assistant Prof. Dr. Violeta Călin, Assistant Prof. Dr. Maria Minodora						
	Iordache, Assistant Prof. Dr. Laura Călugăru						
2.7. Y	2.7. Year of I 2.8. Semester I 2.9. Type of E						
study evaluation							
					(E/C)		

3. Total estimated time (hours/semester of didactic activity an self preparation/study

I. Academic training	g (teachi	ng, practical aj	oplication, a	issessme	ent)			
3.1. Nr hours/week	4	From	3.2.	2	3.3. seminary/	2		
		which:	lecture		laboratory			
3.4. Total hours of	56	From	3.5.	28	3.6. seminary/	28		
educational plan		which:	lecture		laboratory			
Evaluation (nr. of h	ours) : 2	2						
II. Self preparation/	study							
Time allocation						hours		
Study of course mat	erials, te	xtbooks, books	s, study of the	he recon	nmended minimal	36		
bibliography	· · · · · · · · · · · · · · · · · · ·							
Additional research in the library, research through the internet 4						4		
Performing specific activities for preparing projects, laboratories, elaborating reviews or other tasks						4		
Specific preparation activities for projects, laboratory work, assignments, and reports								
Tutoring	Tutoring 2							
Other activities					0			
3.7. Total individual study hours					70			
3.9. Total hours per	3.9. Total hours per semester (3.4.+ 3.7.) 128							

3.10. Number of credits	5

4. Preconditions (where applicable)

4.1. of curriculum	None applicable
4.2. of competences	None applicable

5. Conditions (where applicable)

5.1. to conduct the lecture	Requires a lecture hall with computer assisted
	videoprojection and whiteboard with markers
5.2. to conduct the seminar / laboratory	Requires laboratory rooms with dedicated laboratory
•	instruments, videoprojection, whiteboard with markers

6. Learning outcomes

Knowledge	Skills	Responsibility and autonomy
Knowledge of physics principles that	Creating abilities to	Identification of the objectives that are
govern biological structures and	handle specific	to be achieved, of the available
phenomena, from a medical perspective:	laboratory equipment	resources, of the conditions needed to
thermodynamic states of a living		finalize them, of the working steps and
organism, transport phenomena în living		working time
organisms (from basics of molecular		
transport through cell membranes up to		
body-wide transport through		
hemodynamics); genesis and		
propagation of cells' electric action		
potentials; the study of sensory systems		
(visual and auditory) from a biophysical		
point of view; understanding of the		
mechanics of muscle contraction;		
elements of human psychophysics		
Knowledge of the techniques used in	Development of the	Development of preclinical medical
medical investigation, in diagnosis,	capacity to handle and	thinking
imaging and treatment: using	interpret statistically the	
electromagnetic non-ionizing and	experimental data	
ionizing radiation, knowledge of	obtained in the lab	
ultrasounds, of corpuscular ionizing		
radiation, dosimetry		
Knowledge of the biological effects of	Development of the	Development of a constructive attitude
physical factors from the environment:	ability to work in a team,	regarding scientific research,
the effects of electromagnetic waves in	identification of roles	understanding the reason for continuous
the UV, visible and the IR domains,	and responsibilities in a	research in the medical field
effects of electrical and magnetic fields,	team and applying	
effects of direct, alternative and pulsed	techniques of interacting	
electrical current	and efficient work in the	
	team	
	Learning to efficiently	
	use sources of	
	information as well as	
	resources of	
	communication and	
	assisted professional	
	formation	

7. Course objectives (aligned with the learning outcomes)

7.1. General objective	Identification of physical aspects of medical structures and		
	biological phenomena; techniques used in medical exploration and		
	biological effects of physical factors from the environment.		
7.2. Specific objective	The Biophysics lecture aims to present students with: physical aspects of		
	medical structures and biological phenomena; techniques used in medical		
	exploration and biological effects of physical factors from the		
	environment (at the fundamental level of interaction between physical		
	factors and biological systems) and aims the formation of a specific		
	overall way of thinking of future doctors by establishing a correct base of		
	medical thinking.		
	The Biophysics practical sessions aim to promote the understanding of		
	physical phenomena that are the working basis of equipment in the		
	Biophysics lab, creating the abilities to handle the equipment, developing		
	the ability to handle and interpret the obtained experimental data, critical		
	analysis of scientific literature regarding the usage of clinical investigation		
	equipment.		

8. Contents

8.1. Lecture	Teaching methods	Observations
Lecture 1: Notions of biological		
thermodynamics	Lectures are taught in	The educational materials,
Lecture 2: Water in biological systems	amphitheaters and halls which are	according to the
Lecture 3: Biophysics of disperse systems	technically equipped for this	curriculum, are presented
Lecture 4: Membrane transport phenomena	purpose: laptop, video projector.	interactively using
Lecture 5: Bioelectric phenomena	All lectures have an electronic	multimedia means,
Lecture 6: Biophysics of muscle contraction	support and are brought up to date	Powerpoint presentations,
Lecture 7: Elements of the biophysics of the	from the point of view of the	teaching videos.
visual analyzer	information, according to	
Lecture 8: Elements of the biophysics of	treatises, specialty journals and	
auditive reception	books published by the teaching	
Lecture 9: Elements of phychophysics	staff of the discipline. At the level	
Lecture 10: Blood circulation and notions of	of the discipline a library exists,	
hemodynamics	along with the possibility of	
Lecture 11: Elements of photobiology	online access in order to obtain	
Lecture 12: Elements of radiobiology	the necessary information.	
Lecture 13: Effects of physical factors used		
in therapy		
Lecture 14 : Elements of medical imaging		

Recent bibliography:

- 1. Călinescu, O., Babeş, R., Iftime, A., Băran, I., Ionescu, D., Ganea, C. *Medical Biophysics For 1st Year Medical Students*. Presa Universitară Clujeană, Cluj-Napoca **2024**, ISBN: 978-606-37-2235-6 (ebook), 978-606-37-2234-9 (print).
- 2. Russell K. Hobbie, Bradley J. Roth. *Intermediate Physics for Medicine and Biology*. 5th Edition, Springer **2015**, ISBN: 978-3-319-12681-4.
- 3. Kane Suzanne Amador, *Introduction to Physics in Modern Medicine*, 3rd Edition, Taylor & Francis Ltd. **2020**, ISBN-13: 9781138036031.

- 4. Nordlund, T.M., Hoffmann, P.M., *Quantitative Understanding of Biosystems: An Introduction to Biophysics, Second Edition (Foundations of Biochemistry and Biophysics)*. CRC Press **2019**, ISBN-13: 978-1138633414.
- 5. Nölting, B., Methods in Modern Biophysics, 3rd Edition, Springer 2013, ISBN 13: 978-3662053683
- 6. Philip Nelson, *Biological Physics: Energy, Information, Life*. Chiliagon Science **2020**, ISBN-10: 057868702X.
- 7. Ehsan Samei, Donald J. Peck, *Hendee's Physics for Medical Imaging*, 5th Edition, Wiley-Blackwell **2019**, ISBN: 978-0-470-55220-9.
- 8. Hall EJ, Giaccia AJ. *Radiobiology for the radiologist*, 8th Edition. Lippincott Williams & Wilkins **2018**, ISBN: 978-1-49-633541-8.
- 9. Neil Campbell, Lisa Urry, Michael Cain, Steven Wasserman, Peter Minorsky, Jane Reece, Rebecca Orr. *Biology: A Global Approach*, Pearson **2020**, ISBN-10: 1292341637.
- 10. Alberts, B. et al., Molecular Biology of the Cell, 6th Edition, Garland Science 2020, ISBN: 978-0-393-87094-7.
- 11. Jeremy P.T. Ward, Roger W.A. Linden. *Physiology at a glance*. 4th Edition, Wiley-Blackwell **2017**, ISBN: 978-1-119-24731-9.
- 12. Parke, W.C. *Biophysics: A Student's Guide to the Physics of the Life Sciences and Medicine*, 1st edition, Springer 2020, ISBN-13: 978-3030441456.

8.2. Laboratory / practical lesson	Teaching methods	Observations
LP1. Introductive seminar (including work		
security). Elements of biological	Frontal teaching with the	During the seminars some
thermodynamics.	entire group; interactive	fundamental physics notions will
LP2. Seminar. Notions of bioelectricity.	method, systematic	be recapped – these are necessary
LP3. Electrical recordings of biological	presentation, conversation,	for understanding the physical
systems: Electrical basis of	problematization, debate.	principles underlying the
electrocardiography (EKG1)		function of the equipment in the
LP4. Applications of geometrical optics:		Biophysics lab and the
Study of lenses.		knowledge necessary for
LP5. Applications of geometrical optics		handling experimental data. The
Geometric defects of sight and their		seminars are interactive and the
correction.		students are encouraged to
LP6. Applications of geometrical optics:		actively take part in them.
Optical microscopy. Determination of the		During the practical activities,
diameter of red blood cells.		the students are presented with
LP7. Ionizing radiation: Radiodosimetry:		the physical principle that
determination of natural background of		represents the basis of
ionizing radiation.		functioning of the device,
LP8. Introduction to spectroscopy.		including its mode of usage, the
Electromagnetic spectrum, recording of		description of its component
absorption spectra. Identification of a		parts and the measurement to be
substance through spectroscopic methods.		done.
LP9. The spectrophotometric method for		Multimedia means and teaching
determining the concentration of a solution.		movies are used. After obtaining
LP10. Determination of the concentration		the experimental data, students
through other physical methods: The		process them statistically and
refractometric method.		interpret them. A discussion of
LP11. Measurement of arterial blood		the experimental results is done,
pressure – biophysical principles, units of		including their interpretation
measurement, determination using the		from the perspective of the biophysical mechanisms
sphyngomanometer.		involved. Multiple choice
LP12. Elements of acoustics; introduction to		exercises and applications of
ecography; echographic measurements.		exercises and applications of

LP13. The recording of electrocardiogram.	calculations regarding the topic
Scalar measurements on electrocardiogram.	of the practical activity are
Electrical artifacts (EKG2)	discussed. Medical applications
LP14. Evaluation of the acquired knowledge:	correlated with the determined
Practical exam.	biophysical parameter are
	presented.

Recent bibliography:

- Băran, I., Ionescu D., Iftime A., Mocanu, M.-M., Călinescu, O., Omer S., Babeş, R.M., Iordache, M.M., Nisiparu L., Tofolean, I.T., Onu M., Sulică D., Vinersan J. *Biophysics. Practical Sessions and Seminars* Editor: Babeş, R.M.. Ed. Universitară Carol Davila, Bucureşti 2018, ISBN: 978-606-011-051-4.
- 2. M.S. Meah, E. Kebede-Westhead, *Essential Laboratory Skills for Biosciences*. Wiley-Blackwell **2012**, ISBN: 978-0-470-68647-8.
- 3. Bunch, A.D., *The Introductory Physics Workbook*. CreateSpace Independent Publishing Platform **2017**, ISBN-13: 978-1545284391.
- 4. Stroobandt, R.X., Barold, S.S., Sinnaeve, A.F., *ECG from Basics to Essentials: Step by Step.* Wiley-Blackwell **2015**, ISBN-13: 978-1119066415.

9. Evaluation

Activity type	9.1. Evaluation	9.2. Evaluation	9.3. Percentage in the
	criteria	methods	final grade
9.4. Lecture	- The following will be	Written exam – multiple	80%
	graded: the exactness,	choice	
	accuracy and integrity of	- The written exam	
	the knowledge; logical	consists of solving a	
	coherency; the degree of	multiple choice test made	
	assimilation of the	up of 30 questions from	
	specialty terms; the	the exam bibliography,	
	capacity to operate with	each worth 0.3 points. The	
	principles taught at the	answers are of the	
	lecture.	grouped complement	
	- The students can only	type. 1 point is given by	
	attend the written exam in	default. The grade	
	the exam session if they	awarded (Grade ES) is	
	have obtained a passing	between 1 and 10. The	
	grade (5) at the laboratory	questions are the same for	
	colloquium and if they	all students in a series, and	
	have attended at least	the exam takes place at the	
	50% of the lectures.	same time for all the	
		students of a series.	
		- The exam is considered	
		to be passed if the student	
		has correctly solved a	
		minimum of 12 questions	
		(the equivalent of 5).	
		- In order to obtain a grade	
		of 10 the student must	
		answer at least 27	
		questions correctly.	

- The laboratory At the practical exam 20% 9.5. Seminary/ colloquium consists of (EP) each question is practical activity solving a list of 7 graded with a number of questions, which also points. The maximum contains performing one possible number of points measurement of those for one form is 9 (nine). 1 studied during the point is awarded by practical activities. The default. After grading the measurement is graded written answers of the with a maximum of 2 student (and checking the points. The other student's method of work questions are from the on the experimental bibliography of the device, if needed), the practical activities and are grade of the practical graded with 1 or 2 points. exam is calculated, by rounding up to the nearest The questions address the integer grade (for studied practical example, a student that activities, the biophysical scores 9.5 points is principles of the methods awarded a grade of 10). and the way the devices The grade of the practical function, to recognize the exam (Grade EP) is an devices, know how to use integer. the device, know how to mathematically determine The practical exam can a certain physical take at most 100 minutes quantity that is not for one student. determined directly by the experiment, be - In order for the exam to capable of interpreting be passed, the minimum the obtained results. obtained grade has to be 5, the exam is eliminatory. A model of the questions (sample questionnaire) is posted during the semester and available to the students. The final grade is calculated according to the following formula: $Grade_{final} = 0.8 \times Grade_{ES} + 0.2 \times Grade_{EP}$ Where ES – written exam, EP – practical exam **9.5.1.** Individual

9.6. Minimum performance standard

project (if applicable

- In order for the student to pass the practical laboratory exam (which is eliminatory) with 5, the student must score at least 3,5 points from the questionnaire (1 point is awarded by default).
- The written exam during the exam session is passed if the student has correctly solved a minimum of 12 out of 30 questions (the equivalent of the grade 5 out of 10), which assumes that the student has to be able to recognize and characterize the physical phenomenon that lies at the basis of a certain biological process, he knows fundamental notions in biological thermodynamics, bioelectricity, geometrical optics, wave optics, fluid mechanics, radiobiology, psychophysics. In order for the student to be able to attend the written exam he needs to have passed the practical laboratory exam.

Date of filling: Signature of the lecture tenured Signature coordinator 17.09.2025

of the seminar tenured coordinator

Octavian

Assoc. Prof. Dr. Octavian Assoc. Prof. Dr. Călinescu

Călinescu

Lecturer Dr. Ramona Babeş

Lecturer Dr. Ramona Babeş

Assistant Prof. Dr. Violeta Călin

Assistant Prof. Dr. Maria Minodora Iordache

Assistant Prof. Dr. Laura Călugăru

Date of approval in the Council of the **Department:**

Signature of the Head of the Department