

"CAROL DAVILA" UNIVERSITY OF MEDICINE AND PHARMACY in BUCHAREST

UNIVERSITY OF MEDICINE AND PHARMACY "CAROL DAVILA", BUCHAREST DOCTORAL SCHOOL MEDICINE FIELD

CLINICAL, IMAGING AND, THERAPEUTIC FEATURES OF MULTIPLE SCLEROSIS IN CHILDREN

DOCTORAL THESIS SUMMARY

PhD supervisor:

Prof. Univ. Dr. Daniela Adriana Ion

PhD student:

Dică Alice Denisa

Table of contents

INTRODUCTION

I. GENERAL PART	1
Chapter 1. Pediatric multiple sclerosis - demographic aspects, clinical picture, diagnostic	:
criteria, treatment and, prognosis	2
1.1. Demographic aspects	2
1.1.1. Definition, incidence, prevalence	2
1.1.2. The Particularities of pediatric age	2
1.1.3. The Importance of risk factors	3
1.2. Pathophysiology	6
1.2.1. Mechanisms of demyelination and the involvement of the immune system	6
1.2.2. Factorii genetici	8
1.3. Clinical picture	8
1.3.1. The appearance of clinical manifestations at onset and their variability in evo	olution
in pediatric age	8
1.3.2. Clinical forms of multiple sclerosis	11
1.4. Paraclinical investigations	14
1.4.1. Imaging of the central nervous system - cerebral and spine MRI	14
1.4.2. Blood tests	15
1.4.3. CSF tests	17
1.4.4. Other investigations	17
1.5. Other investigations	18
1.5.1. Revised McDonald Criteria for Diagnosis 2017	18
1.6. Differential diagnosis	19
1.6.1. Conditions that "mimic" multiple sclerosis	19
1.7. Diseases that can be associated with multiple sclerosis	22

1.8. Therapeutic options	23
1.8.1. Treatment of the acute episode (relapse/exacerbation)	23
1.8.2. Disease-modifying therapies	24
1.8.3. Other symptomatic pharmacological and non-pharmacological treatments	30
1.9. Evolution and prognosis	31
1.9.1. The EDSS Score and Other Methods of Quantifying Long-Term Disabilities	s 31
1.9.2. Factors influencing prognosis	32
1.9.3. The quality of life of patients, their families and, the role of the multidiscipl team in the care of patients with multiple sclerosis	inary 32
1.10. The transition of pediatric multiple sclerosis patients to adulthood	33
1.11. Ongoing research and future perspectives	34
1.11.1. Advanced diagnostic and treatment methods	34
1.11.2. The importance of national registries in monitoring pediatric multiple sclero	sis34
II. PERSONAL CONTRIBUTIONS	35
Chapter 2. General framework of the research	36
2.1. Studies conducted within the doctoral research	36
2.2. Material and method	36
2.3. Results	38
Chapter 3. Diagnostic and treatment challenges in two pediatric cases with extensive	
tumefactive cerebral inflammatory lesions suggestive of Balo-type multiple sclerosis (Study 44	1)
3.1. Introduction	44
3.2. Case Studies	44
3.2.1. Case Presentation 1	44
3.2.2. Case Presentation 2	47
3.3. Discussions	51
3.4. Conclusions	53

Chapter 4. Pediatric multiple sclerosis and epilepsy: exploring the complexity of the

etiology of the two conditions - results of a single center (Study 2)	54
4.1. Introduction	54
4.2. Material and method	54
4.3. Results	55
4.4. Discussions	68
4.5. Conclusions	70
Chapter 5. Particularities of pediatric MS according to age of onset - description of	the
clinical spectrum: the experience of a tertiary center (Study 3)	71
5.1. Introduction	71
5.2. Material and method	71
5.3. Results	72
5.4. Discussions	89
5.5. Conclusions	93
Chapter 6. Therapeutic options and response to treatment, especially to fingolimod, in	
pediatric-onset multiple sclerosis - the experience of a tertiary center in Eastern Europe	e 94
6.1. Introduction	94
6.2. Material and method	94
6.3. Results	95
6.4. Discussions	110
6.5. Conclusions	112
Chapter 7. Conclusions and personal contributions	114
7.1. The final conclusions of the study	114
7.2. Study limits	115
7.3. Future research directions and personal contributions	115
References	116

List of published scientific works

- 1. Dică AD, Craiu D, Iliescu C, Găină M-A, Sandu C, Pomeran C, Burloiu C, Găină A-M, Ion DA, Overtime Challenges of Diagnosis and Treatment in Two Pediatric Patients with Extensive Cerebral Tumefactive Lesions Indicative of Baló's Type Multiple Sclerosis, Children, 2025; 12(5):630. doi.org/10.3390/children12050630. https://www.mdpi.com/2227-9067/12/5/630 (Cap. 3, pag. 52-61)
- Dică AD, Craiu D, Iliescu C, Găină M-A, Sandu C, Pomeran C, Bârcă D, Butoianu N, Burloiu C, Minciu I, et al, Pediatric-Onset Multiple Sclerosis (POMS) and Epilepsy: Exploring Etiological Complexity—Outcomes from a Single-Center Experience, Children, 2025; 12(5):631. doi.org/10.3390/children12050631. https://www.mdpi.com/2227-9067/ 12/ 5/ 631 (Cap 4, pag 62-79)
- 3. Dică AD, Craiu D, Lincă FI, Budișteanu M, Iliescu C, Sandu C, Pomeran C, Bârcă D, Butoianu N, Burloiu C, Minciu I, Focșa IO, Şurlică D, Tarța-Arsene O, Cazacu C, Badea A, Niculae AŞ, Ion DA, *Age-onset-related particularities of pediatric MS—understanding the spectrum: a tertiary center experience*, Diseases, 2025; 13(7):193. https://doi.org/10.3390/diseases13070193 (Cap 5, 80-105)
- 4. Dică AD, Craiu D, Lincă FI, Sporea C, Iliescu C, Sandu C, Pomeran C, Bârcă D, Butoianu N, Burloiu C, Minciu I, Şurlică D, Moţoescu C, Tarţa-Arsene O, Cazacu C, Badea A, Budişteanu M, Roşca I, Ion DA, Therapeutic options and outcomes in pediatric-onset multiple sclerosis with a focus on fingolimod—Eastern European tertiary center experience and literature review, Balneo and PRM Research Journal, 2025; 16(2):800. https://doi.org/10.12680/balneo.2025.800 (Cap 6, 106-128)

Epidemiological data

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) characterized by acute episodes (with variable neurological signs and symptoms - vision impairment, motor deficits, balance and/or sensitivity disorders, etc., called relapses or exacerbations) and periods of remission (the patient is asymptomatic) associated with demyelinating lesions (in different stages of evolution) located in the brain and/or spinal cord, primarily affecting adults aged 20-40 years. However, ~5% of cases (up to 10% according to some authors) begin in childhood (<18 years, especially between 13-16 years) and <1% at age <10 years [1-7].

Although multiple sclerosis is rare in children, and very rare at a young age (<10 years), its frequency has increased in recent years [8,9], with an incidence rate reported between 0.2-2.9 per 100,000 among individuals under 18 years old and a prevalence between 2.8-6.0/100,000, with an even wider range (0.7-26.9) depending on the country and the cohort of children evaluated [5, 6, 10-12]. Experts in the field have been driven to provide more attention to this segment of the population as more children are diagnosed.

Pediatric neurologists have always found difficulty in the variety of the initial neurological symptoms, sometimes unusual, the unpredictable clinical course, the typically distinctive imaging appearance—large, extensive lesions—and the limited treatment choices. Recent advances in the field—blood and cerebrospinal fluid biomarkers with increased sensitivity and specificity, particular traits of demyelinating lesions recently described with changes to the protocol for central nervous system imaging, and highly effective treatments that have shown positive effects on disease control in adults, with some already recently used in children and others now being tested in children under clinical trials—help in the early diagnosis and prompt start of suitable treatment, tailored to the needs of each patient.

Equally vital is the exceptional negative effect such a diagnosis has on the child or teenager and their family members, so greatly changing the quality of life for the sufferers. This highlights the need of a multidisciplinary team comprising medical professionals specializing in diagnosing and treating demyelinating diseases—pediatric neurologists, doctors from other specialties, nurses, physiotherapists—as well as non-medical personnel such as psychologists and social workers involved in their care.

Last but not least, the very small number of publications on this topic at the national level, as well as from Eastern Europe, and my special interest, since my residency years, in this fascinating, incompletely studied and understood pathology, were other factors that led me to address this subject.

The main objective of the research was to highlight the clinical, imaging, and therapeutic characteristics of multiple sclerosis in pediatric age and was conducted as a retrospective, observational, longitudinal study over a period of seven years within the Pediatric Neurology Clinic of the "Prof. Dr. Alexandru Obregia" Clinical Psychiatric Hospital, the largest tertiary Pediatric Neurology center in the country and until recently the only one where the National Treatment Program for Rare Diseases in children, including Multiple Sclerosis, was conducted, with over 15 years of experience.

The features of the studied cohort, especially those pertaining to modes of onset, the fast progressive course of multiple sclerosis before treatment start and with disease-modifying therapy for one to three years, and even up to five years for some children with early onset, quantified by the number of relapses per year, the new lesions on MRI, particularly the active ones, as well as the value of the EDSS score which assesses accumulated motor disability, also reflected the main goals of the study.

Although no less important, the secondary objectives evaluated the impact of risk and environmental factors on disease progression, the duration from disease onset to diagnosis, and from diagnosis to treatment initiation—in some cases, these delays were due to local "beliefs" (delayed presentation to the doctor, incomplete investigations and vaccination schedules), and limited access to some high-efficacy therapies approved for children due to legal frameworks and limited financial resources.

I think this study was absolutely required and offered useful insights on the present state of multiple sclerosis in children at the national level, the current diagnostic and treatment challenges, and the very small number—with some areas still to be explored—of specialists in the field that patients and their families can reach. This provided the background and drive for the pediatric MS working group to revise and standardize the diagnosis and treatment protocol for children, actively participate in revising the national treatment recommendations with adult neurologist colleagues, and execute the national registry to obtain precise data on the actual impact of this pathology in Romania.

The results obtained and published on the studied cohort are similar to those in the specialized literature and serve to complete the overall picture of autoimmune-inflammatory diseases at the international level.

The limitations of the research are primarily related to the small and heterogeneous number of patients studied, the use of similar but not identical protocols for performing MRIs (different centers), which prevented the study of aspects related to the size of the lesions and the clear assessment of the degree of cerebral atrophy, as well as the fact that the impact of the disease on the

cognitive side and the quality of life of the affected children and their families was not evaluated using standardized tests, representing a new direction for research.

Risk factors' significance

The most important external risk factors for the onset of MS in pediatric age are: infection with the Epstein-Barr Virus (EBV), as well as other pathogens (other herpesviruses, Covid-19), including vaccination, vitamin D3 (25(OH)D3) deficiency and exposure to sunlight, smoking, alcohol consumption, unhealthy diet, and pollution (atmospheric, household detergents, etc.) [13].

Equally important are the internal risk factors, among which are: obesity, the gut microbiome, the female gender, and sex hormones, particularly during critical times connected with hormonal change in a woman's life: puberty and pregnancy [13].

Mechanisms of demyelination and immune system involvement

The onset of multiple sclerosis is not completely recognized or understood [14, 16], several theories being accepted, that appear to interact with genetic and environmental elements in an effort to clarify the cause of MS.

The first theory is that of an immune-mediated inflammatory process through the autoactivation of lymphocytes [17], which over time affects microglia and produces chronic neurodegeneration [16]. Therefore, demyelination, inflammation, and axonal degeneration play a major role in the onset of MS [14, 15].

Pro-inflammatory cells (B, T), Th1, and macrophages [18, 19] activate inflammation, which destroys the blood-brain barrier (BBB), emphasized on MRI by the uptake of contrast agent in the periphery of active lesions from the onset of the disease [20]. This allows lymphocytes and other inflammatory cells into the CNS, where they affect myelin, oligodendrocytes, and cause axonal neurodegeneration. Thus, the peripheral immune system participates in both phases of the inflammatory process: acute—during relapses and chronic—the gradual progression of the disease at the cerebral level, but without knowing precisely how the peripheral immune cells are drawn by the intrinsic factors of the CNS to invade the cerebral parenchyma [21].

Other theories debated by specialists to understand the etiology of MS include the one through an immune effect, but not autoimmune, induced by a chronic viral infection, the most discussed variant being EBV infection. However, this is not present in all MS patients, which is why EBV infection is currently considered only an important risk factor in the onset of the disease

[17, 22], as well as genetic factors.

Genetic factors

Recent research reveals an increased genetic susceptibility among individuals with MS, which, along with environmental factors, complexly interacts with autoimmune inflammatory processes, triggering the disease among patients [23, 24].

A positive family history in \sim 20% of patients increases the risk 10-20 times compared to the general population (\sim 1/1000 people) of developing MS if you have a sibling or a parent with this disease [24-26].

Particularly the HLA-DRB1*15.01 allele in the European population, HLA (Human Leucocyte Antigen) is the gene family linked to the genetic predisposition of 20-30% of individuals who develop MS, occasionally interacting with low levels of vitamin D3 [27, 28].

Over 200 unique genes have been found by means of the GWAS (Genome Wide Association Study) technique; these genes lie outside the major histocompatibility complex (MHC) including HLA and cannot cause the disease by themselves but can raise its risk. Among the most important genes are IL7R, IRF8, TNFRSF1A, CD6, etc. [29, 30].

Pediatric age peculiarities

The affectation is equal, regardless of gender (girls:boys (1:1)), before puberty, with an observed predominance of 2-4:1 of the female sex after the onset of puberty [6, 31, 32].

The age of onset is particularly crucial since the neurological signs and symptoms differ at a very young age (<10 years) compared to those with onset in adolescence (>12-13 years) [31-34]. Given that the intermediate age has characteristics from both categories, evolving from child to adolescent, and patients in this group cannot be exactly classified into either of the other two, I think patients should be divided into three groups: early onset (<10 years), intermediate age (between 10-12 years), and late onset (>12 years) [35].

Early onset (<10 years) usually indicates multifocal involvement and atypical symptoms that may confuse the pediatric neurologist during diagnosis. These symptoms clinically present as ataxia, several cranial nerve involvement, acute disseminated encephalomyelitis (ADEM-like - confusion, aphasia, balance issues, vomiting, headache), unilateral motor deficits, suggesting mostly infratentorial involvement of the CNS [31-34].

Onset in adolescence (>12-13 years) often indicates monofocal involvement, and the clinical picture at onset resembles that of adults with: unilateral motor deficit (hemiparesis or monoparesis), sensory disturbances, unilateral optic neuritis or vestibular syndrome, symptoms suggestive of supratentorial involvement [12, 31, 33, 34].

The progression of MS in children is faster, the disease manifests more aggressively [32,

36]. 95-98% of them have relapsing-remitting MS within 2-5 years of onset, particularly at a young age [12, 32, 37-40], Brain and spinal cord imaging shows more numerous, extensive, active lesions [31-34, 41-43] as well as cerebral atrophy [6].

Usually, especially after the first two, kids completely recover following the initial relapses; their deficit accumulation over time is slower than that of adults [1-3, 31, 37, 44-47]. However, in the long run, these deficiencies become clear sooner [43, 48-50].

While most of the rest get impaired over time, one-third of juvenile patients show cognitive issues in the initial months of disease progression [38, 45, 51, 52].

The clinical picture

The clinical picture at onset and, in evolution, at different ages will be briefly illustrated.

More prevalent at a young age (<10 years), *ADEM-like* is a rare beginning of MS in children that affects 8-24% of cases [53-56]. Clinically, the patient exhibits encephalopathy, a required symptom for the diagnosis of ADEM, which manifests as changed mental state (lethargy, confusion, irritability) in the absence of fever and an acute infectious background. It might be linked to: headaches, vomiting, motor impairments, balance problems, cranial nerve involvement, and occasionally seizures. Within five years of experiencing a new non-ADEM relapse at least three months following the ADEM, 17% will be diagnosed with MS [57, 58].

Common early onset of MS is *ataxic syndrome*, which is characterized by balance problems and inflammatory lesions in the cerebellum (12%) [59] or the brainstem (50.3%) [56]. Associated with intentional tremor and dysmetria in paretic tests, cerebellar involvement shows as balance problems during walking, particularly in tandem walking or when turning, and occasionally the child may even be unable to walk; speech is jerky and hurried [54-58]. Internuclear ophthalmoplegia generally reflects brainstem involvement [54]. Children might have dizziness, vomiting, and diplopia in both circumstances. Pediatric MS's emergence is predicted [60, 61].

In young age (10%), *multiple cranial nerve involvement* is a more common clinical presentation; it also affects teenagers as well, caused by inflammatory lesions at the brainstem level [54, 56]. Often, several cranial nerves (III, IV, V, VI, VII) are afflicted bilaterally; however, a single nerve may also be impacted—more frequently in teenagers. The VII (facial) and V (trigeminal) nerves are more often engaged in this situation; the patient may have peripheral facial paresis or "facial weakness", diplopia (12%), and even internuclear ophthalmoplegia (30%) [33, 59].

Unilateral/bilateral motor deficit/transverse myelitis is one of the most prevalent forms of onset at all ages (3-22/50%), adolescents>children, generally unilateral in the form of hemi-/monoparesis or asymmetrically bilateral in the case of transverse myelitis. It can arise abruptly or subacutely (4 hours - 21 days) [53-55, 59]. While the sudden onset of impairment is more

suggestive of another pathology [53, 62-64], myelitis in women and the usual imaging look of the spinal cord point to MS.

The lesion can be cerebral but notably spinal in transverse myelitis, with involvement of the pyramidal pathways linked with sensory problems and level of impairment, occasionally with sphincter disturbances for urine or feces [54, 62, 63].

Present in both older and younger children in a percentage of 22-36%, often bilateral (more often in younger children), but also unilateral, *optic neuritis* ranks among the most frequent modalities of beginning or relapse of MS [7, 53-55, 62]. Clinically, it is shown by different degrees of visual acuity loss, eye movement pain or retroocular discomfort, central scotoma, visual field disturbance, and color perception problems (dyschromatopsia), acute or subacute onset [54, 55, 63]. A brain MRI using an optic nerve sequence can show hyperintensity with contrast enhancement at the level of the damaged optic nerve. Typical brain MRI and the finding of oligoclonal bands in CSF fluid are more suggestive of MS [66].

Sensory disturbances—sensory impairment mainly at an older age with 28.2-47% of cases starting this way, sometimes linked with motor deficits, other times independent, usually developing subacutely, progressively, affecting only certain types of sensitivity or all components, described as paresthesias, sometimes painful [55, 57, 59, 64].

Types of MS

Common in children, the first two kinds are clinically isolated syndrome (CIS) and relapsing-remitting forms (RRMS); secondary progressive (SPMS) and primary progressive (PPMS) follow.

Isolated clinical syndrome (CIS) is the first demyelinating event with clinical signs suggestive of MS, lasting at least 24 hours, with an acute or subacute onset, in the absence of a personal history of demyelinating disease, without association of encephalopathy or infection, in which the initial MRI appearance may or may not be suggestive of MS [53-57, 62].

Therefore, the diagnosis of MS can be made if the patient has an episode with neurological indications indicative of MS and the MRI abnormalities satisfy the McDonald 2017 criteria for dissemination in time and space (this applies to children aged > 11 years) [2].

The diagnosis of MS could be made if the patient presents during the episode with clinical symptoms explained by 2 demyelinating lesions in 2 of the usual areas for MS on MRI (periventricular, cortical or juxtacortical, infratentorial, medullary, except for the optic nerve lesion in optic neuritis) and positive oligoclonal bands in CSF [2].

In the case of probable MS (about 80% progress to MS), the patient has a multifocal episode, at least two clinical signs, and at least one symptomatic lesion on MRI, which calls for the criterion of dissemination in time OR if there are monofocal symptoms during the episode and at

least one symptomatic lesion on MRI, which calls for criteria of dissemination in time (DIT) and space (DIS). Only 15% of patients will be later identified as MS if we have mono- or multifocal clinical symptoms at initiation and negative MRI [2, 55-57].

Of pediatric MS patients, 97-98% have the Relapsing-Remitting form (with relapses and remissions); the second exacerbation typically occurs within the next two years from the first one—for example, in 36% of cases, this occurs if the onset of the disease is with an episode of optic neuritis [39, 55, 67].

In the absence of an intercurrent infection, relapses are the emergence of new acute neurological symptoms lasting more than 24 hours; most often, the clinical symptoms remit after treatment of the acute exacerbation, sometimes even spontaneously, in the early stages (the first 2 years), with an increased frequency and severity (53%) of relapses. Across age groups—children and teenagers—no change was seen in these features [53-55, 62].

Radiologically isolated syndrome (RIS) is an incidental finding of typical demyelinating lesions in asymptomatic patients who underwent a brain MRI for other complaints, without a history of neurological episodes within an autoimmune-inflammatory illness [68, 69].

Usually with the relapsing-remitting kind, about one-third of RIS patients may eventually develop MS in the next five years [70].

Among the uncommon types of MS, with tumefactive, broad, concentric lesions, we highlight the Balo form that manifests in children and young adults, where the lesions are enormous (>2 cm, even >3 cm), with a mass effect, acting like a tumor. Study I [71-74] will address this form.

Paraclinical investigations

MRI plays an essential role in MS, both in adults and children. In the case of a patient with acutely/subacutely onset neurological symptoms, it is mandatory to perform imaging investigations such as a 1.5T brain or spinal cord MRI, with contrast if changes are observed [75]. It is an investigation used for diagnosis, monitoring disease progression, and evaluating treatment response [76]. The mandatory sequences are: axial and sagittal T2, T1, FLAIR, DWI, pre- and post-contrast, and optional but recommended 3DT1 (brain volume), DTI (axonal damage), SWI (central vein sign), DIR (posterior fossa, spinal, cortical lesions) and for the optic nerve T2 with fat suppression axial and coronal or STIR, with fine sequences, under 3 mm [74].

Usually found in the white matter, small (<1 cm), ovoid, with obvious, well-defined borders, appearing homogeneously hyperintense on T2, cerebral lesions in pediatric MS seem larger owing to severe perilesional edema in children and have a tendency to confluence. Typical sites are spinal, infratentorial (children 61%), juxtacortical (U-fibres), and periventricular (86%). With a sensitivity of 95% and a specificity of 88% for the emergence of MS, black holes are ancient lesions,

hypointense on T1, produced by a very severe demyelination process and axonal loss [75-77].

Those specific blood tests are for distinguishing from other demyelinating disorders (particularly neuromyelitis optica - NMOSD and MOG-associated diseases - MOGAD) or infectious causes. Thus, the following will be determined: anti-AQP4 antibodies (NMOSD), anti-MOG (MOGAD), anti-dsDNA (SLE), anti-TPO (thyroiditis), IgM and IgG Borrelia (b Lyme) - which should be negative, EBV (can be +), vitamin D3 levels (frequently low), as well as newer neurodegeneration markers such as neurofilaments light chains (NFL) used both as predictors for the onset of MS and in monitoring disease activity (they increase before relapses) [78-80, 81-84, 85, 86].

Oligoclonal bands (OCB), which are linked to the onset of MS if the markers for other demyelinating conditions are negative and are a diagnostic criteria according to the McDonald 2017 criteria [88], represent the particular analyses from CSF. Though not particular to MS and can appear in other inflammatory pathologies, OCB are not unique to MS. Initially derived from CSF, NFL values mirror those in serum, hence establishing the diagnosis of MS [85, 86]. Cheaper and simpler to assess than BO, free light chains kappa (k-FLC) are neuroinflammation indicators with diagnostic accuracy comparable to BO and prognostic value for early MS activity [87].

Visual evoked potentials (VEP) and optical coherence tomography (OCT) are other required and beneficial studies, particularly if the patient has NO.

VEP, a non-invasive, sensitive test, shows the delay in axonal conduction or even its absence in demyelination regions, hence functioning as a negative prognostic indicator and a tool for monitoring MS patients [89]. OCT is a non-invasive technique for measuring the macular cells as well as the thickness of the retinal nerve fiber layer (RNFL). A biomarker for disease progression, the decrease of RNFL and macular cells directly corresponds with fresh brain lesions and the aggravation of brain atrophy [90].

Positive diagnosis

Associating episodic clinical symptoms with certain imaging alterations in the shape of the updated 2017 McDonald criteria from the table below [2, 91] establishes it.

Clinical	Number of lesions on MRI +			SM Diagnosis	
	manifestations	ons clinical signs corresponding to the lesions	Dissemination in space (DIS)	Dissemination over time (DIT)	Diagnosis
	≥2 attacks	≥2 lesions + associated clinical signs	NO	NO	YES

≥2 attacks	1 lesion + associated clinical signs + previous history of clinical episode with signs of	NO	NO	YES
	involvement in a different region than the one currently affected			
≥2 attacks	1 lesion + associated clinical signs	+ DIS necessary	NO	YES
1 attack	≥2 lesions + associated clinical signs	NO	+ DIT necessary	YES
1 attack	1 lesion + associated clinical signs	+ DIS necessary	+ DIT necessary	YES
Typical CIS	2 leziuni + semne clinice coresp (DIS)	NO	OCB + in CSF (DIT)	YES

DIS (dissemination in space) means a new attack with evidence of affecting another level of the CNS **OR** an MRI with a T2 hyperintense lesion typical of MS in 2 out of the 4 CNS areas, excluding the NO lesion.

DIT (dissemination in time) = a new clinical attack **OR** an MRI showing the simultaneous presence of lesions with and without contrast enhancement OR a new hyperintense T2 lesion OR a contrast-enhanced lesion compared to the baseline MRI regardless of the follow-up timing OR positive oligoclonal bands in CSF.

The differential diagnosis is primarily made with other autoimmune-inflammatory conditions that "mimic" MS. Thus, it will be especially differentiated from ADEM (which was presented above in the onset manifestations), NMOSD, and MOGAD.

NMOSD is a collection of inflammatory CNS disorders defined by axonal lesions and immune-mediated demyelination, particularly at the level of the optic nerves and spinal cord [53, 62]. The particular biomarkers are IgG AQP 4 autoantibodies that bind to astrocytes, activate the complement system, and invade the tissue with leukocytes, T lymphocytes, and NK cells, causing astrocyte death, oligodendrocyte damage, and neuron impairment [92]. Clinically, it shows as NO (22-36%) [63] or MT [53], usually without postrema involvement (vomiting (38%), nausea, intractable hiccups), brainstem (oculomotor dysfunction, ataxia), or hypothalamus (narcolepsy, anorexia, diuresis impairment, hypothermia, hypersomnia) [63]. Of those, 60% had the second relapse within the first year of onset. Anti-AQP4-IgG antibodies are linked to a poorer progression, more relapses (81%\u201391%), girls are more affected, and NMO is more often linked with other autoimmune diseases (SLE, sarcoidosis, myasthenia gravis, etc.) [53, 54].

MOGAD - is a demyelinating disease that clinically manifests as: ADEM (45%), NO (29% - more severe, bilateral, does NOT affect the optic chiasm), MT (11% - severe deficit, sphincter and erectile dysfunction), association of NO+MT, or involvement of the postrema area.

Although it is often monophasic, these phenotypes can recur [93]. The biomarkers are anti-MOG antibodies that should be determined within <3 months from onset, preferably using the CBA method [94].

Both are treated immediately like MS; pulse therapy with high doses of methylprednisolone for 5 days followed by oral Medrol reduction in MOGAD very slowly over 3-4 months to avoid relapse. Chronic treatment differs from that of MS.

Diseases associated with pediatric MS - they are often autoimmune, such as type 1 diabetes or Hashimoto's thyroiditis, and in 5-10% of cases, epilepsy is also associated, which in children can have a genetic cause. Thus, in the case of children with MS and epilepsy, the etiology can be autoimmune (secondary to MS), genetic (independent of MS), or combined, with the two conditions influencing each other. This aspect will be discussed in detail in Study II [95].

MS treatment

In a relapse, treatment involves pulse therapy with Methylprednisolone 1g/day or 30mg/kg/day for 5 days, followed by Medrol orally for 2-3 weeks. In the rare situation where the response is minimal, plasmapheresis or IG 2g/kgc/course divided over 5 days can be done.

Chronic treatment with disease-modifying therapy (DMT) will be initiated as soon as possible after the diagnosis of MS is established, by and under the supervision of a pediatric neurologist specialized in multiple sclerosis, with a medication in accordance with the current guidelines, tailored to the patient's needs [10].

Currently, the first line of treatment is still represented by the old platform therapies with moderate efficacy, from the class of beta interferons (IFNb) and glatiramer acetate (GA), which are administered by intramuscular or subcutaneous injection, using the escalation method. Treatment starts with a moderately effective drug (MET) and, in the absence of a response to treatment, it advances to the higher class [10, 96-98]. This approach is also used because many of the high-efficacy therapies (HET) are not yet approved for children, being used off-label in very active forms, with many clinical studies ongoing, including in our clinic. Fingolimod (FTY) is currently the only high-efficacy therapy (HET) approved for the treatment of pediatric MS, which has proven its efficacy compared to older therapies [99-102]. Among the HETs now pending approval for children, monoclonal antibodies including natalizumab, ocrelizumab, rituximab, and alemtuzumab should be noted [103-105]. Given that IFNb has been used in our clinic since 2010 and Fingolimod (FTY) since 2022, and soon Dimethyl fumarate and Teriflunomide, recently approved in our country (November 2024), will be available, with moderate efficacy but oral administration, IFNb and FTY were thoroughly investigated in the thesis under the IV research on the efficacy and safety of the two DMTs in the studied patient cohort, emphasizing the superiority

of FTY.

IFNb - are a class of immunomodulators used in CIS and RRMS, with an EDSS score of 0 - 5.5 or in SPMS with EDSS ≤ 6.5 , from the age of 12, except for Rebif which is administered from the age of 2, having a good safety profile, with adverse reactions similar to those in adults, reducing the relapse rate, but due to the injectable administration (im or sc), compliance is low, especially from the third year of administration, decreasing by 50% [96-98]. In the first months of administration, pseudo-flu symptoms may occur, frequently within the first 24 hours post-administration, irritation at the injection site, and slight increases in transaminases, most of which are transient [98, 99], without any severe adverse reactions in the 15 years of use in our clinic. However, despite correct administration, 30-40% of patients experience disease progression manifested by: ≥ 2 clinically confirmed relapses within 1 year, maintenance/increase in relapse rate over a period of at least 6 months, accumulation of lesions detected by imaging (≥ 1 new T2 lesion), or a K uptake lesion on a new MRI evaluation compared to the one prior to medication [106, 107].

FTY - is a sphingosine-1-phosphate receptor modulator that suppresses lymphocytes exiting the lymph nodes, resulting in a reduced number of circulating lymphocytes, with the role of reducing neuroinflammation, and is administered starting from the age of 10 [99, 100]. It is used as the second line of treatment in RRMS that has not responded to the first line or as the first line of treatment in very active forms of the disease (characteristics of IFNb) and is available in the form of 0.25 and 0.5 mg tablets, 1 tablet/day, daily. The lower concentration is used for children weighing < 40 kg, while the 0.5 mg concentration is used for those weighing ≥ 40 kg. Frequent adverse reactions include: headache, increased GGT, nausea, vomiting, fatigue, infections, and lymphopenia [100]. Before administration, a cardiological, dermatological, and ophthalmological evaluation is conducted for possible adverse effects that may occur in these organs, and a complete vaccination schedule, including VZV, due to the immunosuppressive effect. The first dose is administered in the hospital because there is a risk of bradycardia, with monitoring of vital signs and ECG for six hours before and after those six hours [102]. Both in our study and in other studies, FTY had a good safety profile, good tolerability, and superior efficacy compared to IFNb, with few relapses and new lesions and a stable or improved EDSS [101].

The EDSS score for motor disability, SDMT for cognitive impairment, and PedQL for the quality of life of the patient and their family [108, 109] quantify the course of the disease.

There are favorable prognostic factors, such as: older age at onset (>12 years), onset with NO, female sex, EDSS 0 after the first relapse, annual relapse rate, number of new brain lesions, and low EDSS scores, RR form, long time between relapses, mild symptoms during relapses (sensory disturbances), absence of cognitive impairment and other associated diseases [10,

61], while unfavorable factors are the opposite of these, with the addition of obesity, vitamin D3 deficiency, and OCT changes. Efforts are made to improve the prognosis through early diagnosis and intervention, personalized treatment, a healthy and active lifestyle, avoiding harmful factors: smoking, alcohol, drugs, and maintaining an individual and family emotional balance [61].

Quality of life actually represents a complex of factors - it is the patient's perception of their health status in relation to the chronic condition they suffer from, and MS is a progressive disease with a negative impact on the quality of life of patients. The multidisciplinary team is the key to a better HRQoL for the patient and their family [47, 61, 110].

Studies conducted as part of the doctoral research

During the doctoral research, 4 studies were conducted:

The first study highlighted the particularities of clinical evolution, diagnostic difficulties, and treatment response in two patients with a rare and aggressive form of childhood multiple sclerosis - Baló concentric sclerosis [74].

The second study analyzed a group of six patients from the total cohort of 120 children who also have epilepsy, comparing their progression with that of the other 114 patients, with the aim of highlighting the heterogeneity of the etiology of epilepsy in children who associate these two entities, as it is not always secondary to multiple sclerosis; sometimes these conditions can merely coexist with varying degrees of mutual influence, with epilepsy actually having a genetic cause.

The third study identified the clinical characteristics of three groups based on the age of onset of MS: young age (<10 years), intermediate age (between 10 and 12 years), and adolescents (>12 years), with an emphasis on the particularities of the early-onset age group (<10 years) [35].

The fourth study, conducted on the entire studied cohort, evaluated the response to disease-modifying therapy (DMT), comparing patients who received injectable therapy with moderate efficacy (interferon beta) to those who received oral treatment with high efficacy (fingolimod), with a control group of 22 patients who did not receive specific treatment [102].

I mention that initially, the materials and methods used and general results regarding the demographic data of the cohort and the effect of external risk factors that can increase the risk of developing multiple sclerosis will be presented, followed by a detailed discussion of the results of the four studies listed above.

Material and method

The research was conducted at the "Prof. Dr. Alexandru Obregia" Clinical Psychiatric Hospital, within the Pediatric Neurology Department, during the period from January 1, 2018, to December 31, 2024, and included 120 patients with multiple sclerosis, under the age of 18, diagnosed

and/or monitored and treated in our clinic during this seven-year period.

The study was retrospective, observational, longitudinal, and was conducted in compliance with the current legislation, with the approval of the Ethics Committee of the "Prof. Dr. Alexandru Obregia" Clinical Hospital of Psychiatry (no. 8377/25.03.2025) and the obtaining of informed consent from the legal guardians of all patients included in the research. Before obtaining informed consent, the legal guardians were explained all the details of the study, the fact that clinical data from the files would be analyzed, as well as the method of disseminating the obtained results.

The inclusion criteria were: age < 18 years, a positive diagnosis of multiple sclerosis (meeting the McDonald 2017 criteria) - CIS or RRMS forms (the majority), having at least two admissions to our clinic, being monitored for at least 6 months, and not being included in other multiple sclerosis studies, with or without medication, during the research period.

The exclusion criteria were: uncertain diagnosis of multiple sclerosis or another form of multiple sclerosis (PPMS or SPMS), if they had only one continuous hospitalization, participation in clinical studies of multiple sclerosis, with or without medication, during this research.

The patients' medical records were studied, and demographic data as well as necessary medical data were extracted: presence of risk factors, form of MS, presence of BO, onset symptoms, number of relapses/year before and after treatment, number of new brain lesions/year before and after treatment, EDSS score/year before and after treatment, last EDSS value, type of treatment and number of treatments, cognitive impairment, presence of depression, etc.

At the onset of the disease, all patients underwent brain MRI on 1.5T machines, both native and with contrast agent, and screening of the entire spinal cord (cervico-thoraco-lumbar). Subsequently, the brain MRI was performed at 6 months, then annually or during relapses, at the initiation or change of treatment, while the spinal MRI was performed only at the cervical spine level annually or if the symptoms suggested a cervical lesion and before reaching the age of 18, this protocol being in accordance with the current international guidelines [91].

All patients underwent, in addition to the usual tests, blood tests to exclude infectious pathologies (Borrelia, EBV, HIV, HBV, HCV, TPHA, etc.) or autoimmune diseases (anti-AQP4 antibodies, MOG, anti-dsDNA, anti-TPO, etc.) which were negative. Additionally, all the children underwent a lumbar puncture with the determination of CSF biochemistry and oligoclonal bands (OCB). Depending on the associated pathology or the neurological symptoms during the episode, the subjects benefited from: endocrinological, ophthalmological, psychological, and psychiatric evaluations, as well as a physiotherapy program. Those with epilepsy underwent an EEG at the onset of the seizures, and then periodically as described in Study II.

Outcomes - basic demographic information and the influence of risk factors on the

examined cohort

The cohort includes 79 girls and 41 boys, with a girl-to-boy ratio of 2:1, and the age of onset ranged from 5 years and 2 months to 17 years and 6 months, with an average age of 14.29 years at disease onset and 14.99 years at diagnosis. Most of the patients come from urban areas (62.5%), with the geographical distribution being from Muntenia (28.3%), followed by Transylvania (23.3%), Moldavia (22.5%), Bucharest (14.1%), and Oltenia (8%).

Regarding risk factors, 17.5% were obese, with 71.4% (15 out of 21) being female. 14.1% reported the presence of a comorbidity in the month preceding the onset of the disease, with 23.5% of these testing positive for EBV (4 out of 17) and 17.6% for SARS-CoV-2, while the rest were not identified. Alcohol (0), drug (1.6%), and tobacco (5%) consumption were practically nonexistent, likely due to the presence of parents during the anamnesis. All evaluated patients had a vitamin D3 deficiency, with the majority, 63.3%, having a moderate deficiency, between 20-24 dl/ml.

64.1% of the subjects in the cohort have RRMS, while the rest have CIS. 80% of the participants have positive BO, and 36.4% of them are patients with CIS (35 out of 96), meaning that 81.3% of the children with CIS (35 out of 43) have positive BO and can be diagnosed with MS before the onset of a new relapse, as since 2017 their presence in CSF has been a diagnostic criteria.

Patients in the cohort had associated cognitive impairment in 24.1% and depression in 25.8%, only 5% had epilepsy, 3.3% Hashimoto's thyroiditis, and 1 patient had type I diabetes diagnosed prior to MS. Family histories, especially on the autoimmune side, were positive for the following pathologies: 8.3% (10) Hashimoto's thyroiditis, 7.5% (9) MS, 4% (5) type I diabetes, and 2 each with systemic lupus erythematosus, hypothyroidism, rheumatoid arthritis, psoriasis, and epilepsy. In 70% of cases, the affected relatives are first-degree, and in 30%, second-degree. In 3 cases, individuals from multiple consecutive generations are affected, and in 4 cases, an affected relative has two associated autoimmune pathologies.

The duration of disease monitoring during the study was between 1-3 years for 51.6% of the children, and 54.8% of them (34 out of 62) were monitored for 2-3 years, 26.6% were periodically evaluated for more than 3 years, 7.5% for more than 5 years, and 20% for 6 months to 1 year. ~20% of the patients (22) did not receive chronic treatment (the reason being the duration <1 year until the age of 18 with access to new molecules), while 39.1% (47) received treatment between 1-3 years, and 59.5% of these (28 out of 47) were treated for 1-2 years, the remaining 25.8% received specific medication for <1 year.

In **Study I** [75], I described the clinical characteristics, diagnostic difficulties, and treatment challenges in two cases of Balo's concentric sclerosis, with extensive cerebral lesions (> 2/3 cm), tumefactive, with massive perilesional edema and "tumor-like" behavior - mass effect, symptoms of

intracranial hypertension (ICH), or acutely installed motor deficits, a very rare form of MS, both in adults and children.

The first case was of a 15-year-old girl who presented to the clinic with episodic, intense headaches that had started 3 months earlier, initially with short episodes lasting 15 minutes, 3-4 times a week, spontaneously remitting, but with an increase in frequency and intensity in the last few weeks, with alarming signs: high intensity, duration ≥3-4 hours, not responding to antiinflammatories, associated with photophobia/phonophobia and vomiting. Although the neurological examination was normal, due to the symptoms of increased intracranial pressure, a brain MRI was performed, which revealed an extensive tumefactive lesion in the right temporal lobe measuring 23 × 19 × 21.5 mm, suggestive of a demyelinating lesion, and another <1mm, with the appearance of an "active plaque." The spinal MRI was normal, and the spectroscopy, performed to differentiate a demyelinating disease from a glioma, showed inflammatory changes. Investigations continued on the autoimmune side, with the detection of positive BO in the CSF, while antiAQP4, antiMOG antibodies were negative and ATPO was elevated in the context of an associated autoimmune thyroiditis, leading to the diagnosis of Balo-type MS. He underwent pulse therapy with Methylprednisolone for 5 days, followed by Medrol for 2 weeks, with remission of symptoms. The clinical evolution was favorable in the following 2 and a half years, with rare episodes of headache, and the follow-up MRIs revealed new demyelinating brain and cervical lesions and a reduction in the large lesion. Due to the association with depression, she required psychiatric treatment and psychotherapy. After more than 2 years, she presented new symptoms with dysarthria and right facial asymmetry, and the neurological examination revealed right peripheral facial paresis and right hypoglossal nerve involvement. Corticosteroid pulse therapy was repeated with symptom remission, but when attempting to completely discontinue Medrol, limb paresthesias appeared, which is why corticosteroid therapy was continued. At the last evaluation, the EDSS was 2 - without cortisone (1 after one month from reinitiation), with normal intellect. IFNb was proposed as the first-line treatment, which had been suggested previously, but the patient and her family wanted to delay the treatment since she was soon turning 18 and had access to HET.

The second case is that of an 11-year-old girl who presented to the clinic with dysarthria and decreased muscle strength in the left hemicorp, which started on the day of presentation. The neurological examination in the emergency room revealed left hemiparesis with left central facial paresis, and the brain MRI showed a large tumefactive lesion in the right frontal lobe measuring 24x15.5x20.4 mm, as well as other small demyelinating lesions, raising suspicion of a demyelinating disease vs an infectious cause. The spinal MRI was within normal limits, the lumbar puncture revealed the presence of BO, and the blood tests showed negative antiAQP4 and antiMOG antibodies and positive IgG VEB. Pulse therapy with Methylprednisolone was performed, followed by Medrol

po for 2 weeks, with complete remission of the deficit. After 3 months, he presents with episodic paravertebral contractures, lasting minutes, a repeat brain MRI is performed, and an expansion of the brain lesion is observed, with massive perilesional edema. The neurosurgeon recommends spectroscopy, as in the first case, which shows an inflammatory aspect. The symptoms resolved spontaneously, and she was periodically monitored with imaging, showing a reduction in the size of the lesion. The next episode occurred at >3 years, also with left hemiparesis, resolved after corticosteroid therapy. IFNb was proposed, but the family wanted to delay chronic medication due to the injectable administration. After the third episode, 9 months later, the family opted for rituximab (RTX) treatment abroad, with favorable progress, no new relapses, and reduction of the lesion. And this adolescent also required psychiatric medication and psychotherapy for depression, her intellect was normal, and her EDSS remained at 0 between relapses and at the last evaluation.

In these cases, the differential diagnosis was primarily made with tumor formations, and the specific appearance of the lesion—concentric, tumefactive, and spectroscopy—was highly suggestive of demyelinating lesions [74, 75, 77] avoiding cerebral biopsy. The localization of the lesions was supratentorial, which was much more frequent than infratentorial. In both cases, the response to high-dose corticosteroid treatments was favorable, with complete remission of symptoms, a finding frequently reported in the literature, this treatment being considered "first-line" [71, 72, 111]. The clinical evolution was different; the first case followed a monophasic course, with only one relapse after >2 years, while the second case had a higher frequency of relapses similar to a typical MS case. Oligoclonal bands were positive in the CSF of both patients, and the MRIs of both cases showed typical lesions for MS, all of which are additional arguments for this condition [71, 72].

Regarding chronic treatment, for disease stabilization, the initiation of a DMT is recommended, although there is no guideline or protocol specifying which type of medication should be used, preferably a highly effective medication considering the potentially aggressive course of the form [72]. In the studied cases, the first patient wanted to delay IFNb until she was 18 years old, while the other received RTX abroad, with a favorable outcome (no relapses, no new brain lesions). RTX treatment is a well-chosen option because, in Balo's concentric sclerosis, oligodendrocytes and astrocytes are affected, leading to inflammation and demyelination [112], particularly involving peripheral B cells. RTX is a monoclonal anti-CD20 antibody that also acts on peripheral B cells, activating their anti-inflammatory role, with rapid reduction of demyelination and inflammation observed through control of relapses and absence of new brain lesions [105, 113].

In very rare pathologies, sharing experiences helps clinicians better manage similar cases, and the study's objectives were to characterize this rare form of MS and the desire for these examples to be useful to other colleagues, easing their diagnostic process and treatment choice.

The second study [95] aims to highlight the characteristics of the group with epilepsy and the heterogeneity of epilepsy etiology, which, in children with MS, is not always correlated with the autoimmune condition. There is also a genetic cause that can explain the occurrence of epilepsy in these children, in which case the two diseases are associated with varying degrees of mutual influence.

For this retrospective, observational study, 120 patients diagnosed with MS according to the McDonald 2017 criteria and treated at the Pediatric Neurology Clinic of Obregia Hospital during the period 2018-2024 were selected. Among them, 6 children (3 boys and 3 girls; mean age 9.8 years, range 4.6–15.3 years) had seizures or epilepsy. Data regarding the details of the seizures for the 6 children were collected: age at onset; time relative to the onset of MS; type, frequency, and duration of the seizures; whether the diagnosis of epilepsy was established (according to the ILAE classification), etc.; as well as data regarding MS for all the children in the study: age at onset and diagnosis of MS, duration of MS monitoring, annual relapse rate (ARR) before and after treatment, last EDSS. The patients underwent 1.5T native and K-enhanced brain MRIs, according to epilepsy and MS protocols, and those with epilepsy had electroencephalograms (EEGs) in the international 10-20 system with a double banana montage and an additional ECG channel; all 6 patients had ≥ 1 prolonged (3-4 hours) awake and sleep EEG, as well as multiple awake EEGs, the details of which were described. For statistical analysis, JASP 0.19 software was used, with tests including chisquare with Yates' continuity correction and Mann-Whitney U confirmed by the Shapiro-Wilk test. A p-value < 0.05 was considered statistically significant.

Characteristics of epilepsy: onset of seizures <10 years in 3 children, 1 at 10 years, and 2 in adolescence. In 4 children, the seizures began ≥2 years before MS, and in 2 of them near the onset of MS (2 weeks/9 months). In one adolescent, seizures appeared 2 weeks after the onset of MS, being controlled with levetiracetam (LEV). In a child under 10 years old, they started 9 months after the onset of MS, during the second exacerbation, in the form of a 4-hour left focal status epilepticus, and were treated with LEV for 6 months even though it was considered an acute seizure, not epilepsy. Both had their seizures controlled, and these were of autoimmune cause (secondary to MS). Among the subjects whose seizures preceded MS, two meet the criteria for a genetic form of epilepsy. The first adolescent was diagnosed with self-limited focal epilepsy with centro-temporal spikes (SeLECTS) at 6 years old, received treatment with valproic acid (VPA) for 3 years, with seizure control, and was two years without antiepileptic treatment (AE) at the onset of MS, while the brain MRI at 6 years old was normal. Another child presented with a generalized tonic-clonic seizure (GTCS) under conditions of sleep deprivation at the age of 13, and the EEG showed PVU-CVU type changes and photosensitivity at SLI between 10-30 Hz associated with myoclonus, leading to the diagnosis of idiopathic generalized epilepsy - juvenile myoclonic epilepsy (JME), controlled with LEV, with the onset of MS occurring 2 years after the epilepsy. The MRI performed

for epilepsy, and then dynamically, showed stationary demyelinating lesions until the onset of MS. The last two children in the group present a complex situation: they have epilepsy that started ≥ 6 years before MS, at the age of 4 years and 10 years, respectively, and have experienced multiple types of seizures (generalized, focal +/- secondary generalization), resistant to treatment, more frequent after the onset of MS, have generalized and focal changes on EEGs, and are on polytherapy with antiepileptic drugs, suggesting a genetic-autoimmune cause (genetic forms of epilepsy worsened after the onset of MS). All 6 had AED treatment, 4 had 1 AED that controlled the seizures, and 2 had polytherapy with persistent seizures.

Characteristics of MS: onset was with hemiparesis in 4 children, 1 with sensory disturbances, and 1 with ataxia, hemiparesis, and cranial nerve involvement. In 1 case, onset was before 10 years, in 2 cases between 10-12 years, and in 3 cases after 12 years. Two children have CIS, four have RRMS, and BO was positive in four children. All received DMT, 4 a single DMT (2 IFNb and 2 FTY), while 2 received multiple DMTs - initially IG, then IFNb, and finally FTY, with favorable progression. Those with RRMS had 2, 4, 7, and respectively 8 relapses, while those with multiple DMTs had 7/8 relapses. These 6 children were monitored for \geq 2 years from the diagnosis of MS. To determine whether epilepsy is a risk factor for faster progression of MS and accumulation of disabilities, the annual relapse rate (ARR) and EDSS scores were compared between the group of patients with epilepsy and the group without epilepsy. It was found that, in the group with associated epilepsy, the last EDSS score showed a statistically significant increase in this group compared to the other (p < 0.006).

The results of this research demonstrate that pediatric patients with MS and epilepsy constitute a heterogeneous, complex group, making it difficult to define the precise relationship between these two entities. In children with MS, the inflammatory process is more active than in adults – and the early onset of MS implies a longer disease duration and the accumulation of disabilities over time [112].

On the other hand, epilepsy is one of the most common pediatric neurological pathologies ("the childhood disease") [114, 115], and genetic and structural causes are the most common etiologies of it. Zuo demonstrated the existence of a bidirectional causal relationship between MS and epilepsy [116].

Therefore, in this study, 2 patients have autoimmune seizures/epilepsy, 2 patients have genetic epilepsy, with MS as an additional factor, and 2 patients have a genetic-autoimmune etiology, mutually exacerbating each other. As a secondary objective, in this cohort, epilepsy is a risk factor for a higher EDSS score and the accumulation of disabilities, but the outcome was also influenced by the young age at MS onset, the long disease course, and the very active form of MS in

these children. The presented study is a promoter for other multicenter research, aimed at validating the described hypotheses in the general population.

Study three [35] aims primarily to characterize the clinical features of pediatric patients with MS, dividing them into three groups based on the age of onset: early (<10 years), intermediate (10-12 years), and late (>12 years), with an emphasis on the peculiarities of the younger age group because, from the modes of onset to progression and response to treatment, these children present in a completely atypical manner. We deemed it necessary to introduce the intermediate age group, which combines elements from the other two groups, as it is a transitional period in the child's development that does not fully fit into either of the other two.

In this retrospective study, 120 children diagnosed and treated for MS, RR or CIS forms, participated at the Pediatric Neurology Clinic of Sp Obregia over a period of 7 years (2018-2024). The medical records of these patients were examined, and demographic data, age at onset, manifestations of the first attack, number of relapses, MRI appearance, EDSS score, and presence of BO were extracted. Cerebral and spinal cord MRIs at 1.5T were performed at onset and then according to the monitoring protocol.

The statistical analysis of the data was performed using SPSS version 22 and JAMOVI version 0.17.1.0. Descriptive statistics highlighted the clinical and demographic characteristics. Inferential analyses included chi-square tests to evaluate associations between categorical variables and the Kruskal-Wallis test to compare distributions across three age groups. To ensure consistency between groups, a random sample of ten patients with MS onset after the age of 12 was selected for subgroup analysis.

At the onset of MS - the first demyelinating episode, 11 patients were under 10 years old (group 1), 10 were between 10 and 12 years old (group 2), and 99 were over 12 years old (group 3), with a predominance of females in group 3 (2:1). In groups 1 and 2, the onset-to-diagnosis duration was up to 6-12 months due to the failure to meet McDonald criteria, compared to group 3 where the majority were diagnosed in <1 month, with statistically significant values, p=0.005, p<0.01. 80% of the subjects have RRMS, with most having a higher number of relapses before treatment, especially group 1 [31-33]. 27% of the patients in group 1 have a long duration between the first two relapses, even up to 3 years, but overall a higher number of relapses, differing from the reports of Kuppke and Kauth where the interval between the first two relapses is comparable between groups. In group 1, the onset was characterized by: ADEM-like episode 27.27%, ataxia 36.36%, and cranial nerve involvement 36.36%, while in group 3, the clinical manifestations at onset were: hemiparesis 14.14%, sensory disturbances 14.14%, optic neuritis 6.06%, and vestibular syndrome 23.23%, results comparable but not identical to the literature [31, 32, 50, 58]. Oligoclonal bands were positive in 63% of subjects with early onset and in 80-85% of those in groups 2 and 3 [6, 33 50].

85% of patients of all ages received DMT. 54% of group 1 received INFb and 18% FTY, and 1/3 switched to FTY or RTX. In group 2, 20% received RTX, 30% IFNb, and 50% FTY, while in group 3, 81% were treated with IFNb, 5% with FTY, results partially similar to Kauth's study [31]. EDSS begins to be modified after 2-3 years of illness, especially from the 4th year of MS in children with early onset (p< 0.001). With treatment, the EDSS score is slightly improved (p>0.05, p=0.052-0.584) or stationary in all three study groups (p<0.001), with statistically significant value. At the end of the study, in group 1, EDSS was 0 in 54% and slightly modified (1-2) in 36%; in group 2, 70% had EDSS 0 and 20% had EDSS 1-2; in group 3, 84% had EDSS 0 and 10% had EDSS 1-2, and 5 adolescents had EDSS 3, results similar to those published by Kauth [31]. In the early years of the disease, MRI showed many new lesions, especially in group 1, and after the introduction of DMT, a significant reduction in the size of the old lesions and the number of new ones was observed, consistent with the literature [6, 31-33, 58]. In group 1, 20% had borderline intellectual functioning, 20% had mild mental retardation; all had learning disabilities and executive function impairment [52, 61]. \geq 50% of group 3 had psychiatric impairment - depression, anxiety [59, 117]. In group 2, we encounter a combination of clinical manifestations, imaging aspects, and treatment response present in the other two groups.

Ultimately, the characteristics of the early-onset group stand out: atypical symptoms especially at onset, motor and cognitive deficits accumulated over time, numerous and active brain lesions, all drawing the attention of experts to this special group - children with onset of MS <10 years. The study results highlighted a delay in the diagnosis of MS due to the atypical onset and progression, as well as changes in EDSS with the appearance of deficits after 3-4 years of progression in group 1.

The fourth study [102] aimed primarily to evaluate the response of patients in the studied cohort to disease-modifying treatment (DMT), demonstrating the superior efficacy and good safety profile of fingolimod (FTY) over interferon beta (IFNb). The subjects were divided into three groups: the IFNb group, the FTY group, and the no medication group (the control group). The response to treatment was quantified by measuring the number of relapses, new brain lesions, and the level of accumulated disability - the EDSS score, highlighted before and after the initiation of treatment.

The present study included 115 participants (5 excluded due to other treatments) aged <18 years, diagnosed with MS during hospitalization in the Pediatric Neurology Department of Obregia Hospital, 38 boys (33%) and 77 girls (67%), 9 with early onset (<10 years), 8 with onset between 10 and 12 years, and 98 with late onset (>12 years). 22 subjects were untreated, 79 were treated with IFNβ, and 14 with FTY. The 1.5T brain and spinal cord MRI was performed at onset and then according to the MS protocol. The statistical analysis of the data was performed using SPSS v 22.

The Kruskall Wallis and Chi-square association tests were applied to identify any differences between groups. From the group with IFNb, 15 children were randomly selected for group homogeneity, and the Chi-square test was applied.

20 untreated patients and 73 with IFNb had late-onset MS. In the group treated with FTY, 4 patients had early-onset MS, 5 had the onset of the disease between 10 and 12 years, and 5 had late-onset MS. 62 from the IFNb group initiated treatment within <6 months of diagnosis, while 11 from the FTY group started treatment within 6-12 months and 3 within 1-2 years due to the incomplete vaccination schedule required before starting FTY. The girl-to-boy ratio was 2:1 in the untreated and IFNb group and 1:1 in the FTY group. All treated patients received therapy for at least 1 year, most for 1-3 years.

The number of relapses was similar between groups before treatment and showed statistically significant differences over the 3 years of follow-up with treatment: 0 relapses in the FTY group, 58% without relapses in the IFNb group, results similar to those reported by Chitnis and Spelman [99, 118]. The duration between the first two relapses was similar between the groups. All patients had many new brain lesions prior to treatment, but with significant differences over the 3 years of treatment: a reduction of >50% in the IFNb group and 67-80% in the FTY group, percentages similar to Arnold's report [119]. No significant differences in EDSS scores between groups before treatment, but after its initiation, 14% of patients with IFNb had mild impairment and 4% moderate after 1 year, later 10% had mild disability and 2% moderate. For the FTY group, 20% showed mild deficits and 7% moderate deficits after 1 year, then 7% showed mild deficits.

The results indicate a 30% improvement in the IFNp group and a 70% improvement in the FTY group after 1 year, which is maintained, confirmed by Piri Cinar and other authors [120-122]. Also highlighted low EDSS values in children and adolescents treated with fingolimod. Adverse reactions were mild, with a pseudo-flu-like appearance for IFNb and lymphopenia for FTY, confirming a good safety profile [105, 123].

Early initiation of disease-modifying therapy (DMT) is essential in pediatric-onset multiple sclerosis (POMS) to improve long-term outcomes. This study has demonstrated the superiority and good safety profile of FTY in the treatment of pediatric MS compared to IFNb and supports the need for using HET in the treatment of MS in children.

Conclusions

The main objective of this study was to characterize clinically, radiologically, and in terms of response to available specific treatments, pediatric multiple sclerosis in Romania.

Therefore, we highlighted the clinical features based on the age of onset of MS, with an emphasis on describing the group with early onset (<10 years) due to atypical progression; we described rare forms of MS, with tumefactive lesions, which pose diagnostic and treatment

challenges - Balo's concentric sclerosis; we explored the complexity of the etiology of epilepsy in children who associate the two entities: MS and epilepsy, and, last but not least, we underscored the necessity of initiating DMT as quickly as possible, especially HET, demonstrating the superior efficacy and good safety profile of FTY in the treatment of pediatric MS compared to IFNb for a favorable progression, with the best possible disease control and a good long-term quality of life for patients and their families.

I point out that such a study, on a group of children with MS, has not been conducted so far in our country.

References

- 1. Chitnis T, Glanz B, Jaffin S, Healy B. Demographics of pediatric-onset multiple sclerosis in an MS center population from the Northeastern United States. *Mult Scler*. 2009 May;15(5):627-31. doi: 10.1177/1352458508101933. Epub 2009 Mar 19. PMID: 19299440.
- 2. Brola W, Steinborn B. Pediatric multiple sclerosis current status of epidemiology, diagnosis and treatment. *Neurol Neurochir Pol.* 2020;54(6):508-517. doi: 10.5603/PJNNS.a2020.0069. Epub 2020 Sep 17. PMID: 32940341.
- 3. Krupp LB, Tardieu M, Amato MP, Banwell B, Chitnis T, Dale RC, Ghezzi A, Hintzen R, Kornberg A, Pohl D, Rostasy K, Tenembaum S, Wassmer E; International Pediatric Multiple Sclerosis Study Group International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. *Mult Scler*. 2013 Sep;19(10):1261-7. doi: 10.1177/1352458513484547. Epub 2013 Apr 9. PMID: 23572237.
- 4. Dobson R, Giovannoni G. Multiple sclerosis a review. *Eur J Neurol*. 2019 Jan;26(1):27-40. doi: 10.1111/ene.13819. Epub 2018 Nov 18. PMID: 30300457.
- 5. Jeong A, Oleske DM, Holman J. Epidemiology of Pediatric-Onset Multiple Sclerosis: A Systematic Review of the Literature. *J Child Neurol*. 2019 Oct;34(12):705-712. doi: 10.1177/0883073819845827. Epub 2019 Jun 11. PMID: 31185780.
- 6. Deiva K. Pediatric onset multiple sclerosis. *Rev Neurol (Paris)*. 2020 Jan-Feb;176(1-2):30-36. doi: 10.1016/j.neurol.2019.02.002. Epub 2019 May 12. PMID: 31088692.
- 7. Yan K, Balijepalli C, Desai K, Gullapalli L, Druyts E. Epidemiology of pediatric multiple sclerosis: A systematic literature review and meta-analysis. *Mult Scler Relat Disord*. 2020 Sep;44:102260. doi: 10.1016/j.msard.2020.102260. Epub 2020 Jun 4. PMID: 32540746.
- 8. Harding KE, Liang K, Cossburn MD, Ingram G, Hirst CL, Pickersgill TP, Te Water Naude J, Wardle M, Ben-Shlomo Y, Robertson NP. Long-term outcome of paediatric-onset multiple sclerosis: a population-based study. *J Neurol Neurosurg Psychiatry*. 2013 Feb;84(2):141-7. doi: 10.1136/jnnp-2012-303996. Epub 2012 Nov 15. PMID: 23154123.
- 9. Waldman A, Ghezzi A, Bar-Or A, Mikaeloff Y, Tardieu M, Banwell B. Multiple sclerosis in children: an update on clinical diagnosis, therapeutic strategies, and research. *Lancet Neurol.* 2014 Sep;13(9):936-48. doi: 10.1016/S1474-4422(14)70093-6. PMID: 25142460; PMCID:

PMC4443918.

- 10. Fisher, K.S.; Cuascut, F.X.; Rivera, V.M.; Hutton, G.J. Current Advances in Pediatric Onset Multiple Sclerosis. *Biomedicines* **2020**, 293 8(4), 71, 1–9; doi:10.3390/biomedicines8040071. PMID: 32231060; PMCID: PMC7235875
- 11. Sandesjö, F.; Tremlett, H.; Fink, K.; Marrie, R.A.; Zhu, F.; Wickström, R.; McKay, K.A. Incidence rate and prevalence of pediatric-297 onset multiple sclerosis in Sweden: A population-based register study. *Eur. J. Neurol.* **2024**, 31, e16253; doi:10.1111/ene.16253. 298
- 12. Alroughani R, Akhtar S, Ahmed SF, Behbehani R, Al-Abkal J, Al-Hashel J. Incidence and prevalence of pediatric onset multiple sclerosis in Kuwait: 1994-2013. *J Neurol Sci.* 2015;353(1-2):107-10. doi: 10.1016/j.jns.2015.04.025. Epub 2015 Apr 24. PMID: 25936254.
- 13. Alfredsson L, Olsson T. Lifestyle and Environmental Factors in Multiple Sclerosis. *Cold Spring Harb Perspect Med.* 2019 Apr 1;9(4):a028944. doi: 10.1101/cshperspect.a028944. PMID: 29735578; PMCID: PMC6444694.
- 14. Compston A, Coles A. Multiple sclerosis. *Lancet*. 2008 Oct 25;372(9648):1502-17. doi: 10.1016/S0140-6736(08)61620-7. PMID: 18970977.
- 15. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. *Nat Rev Immunol*. 2015 Sep 15;15(9):545-58. doi: 10.1038/nri3871. Epub 2015 Aug 7. PMID: 26250739.
- 16. Goodin DS. The epidemiology of multiple sclerosis: insights to disease pathogenesis. *Handb Clin Neurol*. 2014;122:231-66. doi: 10.1016/B978-0-444-52001-2.00010-8. PMID: 24507521.
- 17. Roach ES. Is multiple sclerosis an autoimmune disorder? *Arch Neurol.* 2004 Oct;61(10):1615-6. doi: 10.1001/archneur.61.10.1615. PMID: 15477522.
- 18. Gharibi T, Babaloo Z, Hosseini A, Marofi F, Ebrahimi-Kalan A, Jahandideh S, Baradaran B. The role of B cells in the immunopathogenesis of multiple sclerosis. *Immunology*. 2020 Aug;160(4):325-335. doi: 10.1111/imm.13198. Epub 2020 May 10. PMID: 32249925; PMCID: PMC7370136.Arneth B. Contributions of T cells in multiple sclerosis: what do we currently know? JNeurol 2021; 268:4587.
- 19. Zierfuss B, Larochelle C, Prat A. Blood-brain barrier dysfunction in multiple sclerosis: causes, consequences, and potential effects of therapies. *Lancet Neurol*. 2024 Jan;23(1):95-109. doi: 10.1016/S1474-4422(23)00377-0. PMID: 38101906.
- 20. Greiner T, Kipp M. What Guides Peripheral Immune Cells into the Central Nervous System? *Cells.* 2021 Aug 10;10(8):2041. doi: 10.3390/cells10082041. PMID: 34440810; PMCID: PMC8392645.
- 21. Chaudhuri A, Behan PO. Multiple sclerosis is not an autoimmune disease. *Arch Neurol.* 2004 Oct;61(10):1610-2. doi: 10.1001/archneur.61.10.1610. PMID: 15477520.
- 22. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. *Nat Rev Neurol*. 2017 Jan;13(1):25-36. doi: 10.1038/nrneurol.2016.187. Epub 2016 Dec 9. PMID: 27934854.
- 23. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map

- implicates peripheral immune cells and microglia in susceptibility. *Science*. 2019 Sep 27;365(6460):eaav7188. doi: 10.1126/science.aav7188. PMID: 31604244; PMCID: PMC7241648.
- 24. Goris A, Vandebergh M, McCauley JL, Saarela J, Cotsapas C. Genetics of multiple sclerosis: lessons from polygenicity. *Lancet Neurol*. 2022 Sep;21(9):830-842. doi: 10.1016/S1474-4422(22)00255-1. PMID: 35963264.
- 25. Sawcer S, Franklin RJ, Ban M. Multiple sclerosis genetics. Lancet Neurol. 2014 Jul;13(7):700-9. doi: 10.1016/S1474-4422(14)70041-9. *Epub* 2014 May 19. PMID: 24852507.
- 26. Bronson PG, Caillier S, Ramsay PP, McCauley JL, Zuvich RL, De Jager PL, Rioux JD, Ivinson AJ, Compston A, Hafler DA, Sawcer SJ, Pericak-Vance MA, Haines JL; International Multiple Sclerosis Genetics Consortium; Hauser SL, Oksenberg JR, Barcellos LF. CIITA variation in the presence of HLA-DRB1*1501 increases risk for multiple sclerosis. *Hum Mol Genet*. 2010 Jun 1;19(11):2331-40. doi: 10.1093/hmg/ddq101. Epub 2010 Mar 8. PMID: 20211854; PMCID: PMC2865376.
- 27. Ramagopalan SV, Maugeri NJ, Handunnetthi L, Lincoln MR, Orton SM, Dyment DA, Deluca GC, Herrera BM, Chao MJ, Sadovnick AD, Ebers GC, Knight JC. Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet. 2009 Feb;5(2):e1000369. doi: 10.1371/journal.pgen.1000369. *Epub* 2009 Feb 6. PMID: 19197344; PMCID: PMC2627899.
- 28. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A, Caillier SJ, Ban M, Goris A, Barcellos LF, Lincoln R, McCauley JL, Sawcer SJ, Compston DA, Dubois B, Hauser SL, Garcia-Blanco MA, Pericak-Vance MA, Haines JL; Multiple Sclerosis Genetics Group. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. *Nat Genet*. 2007 Sep;39(9):1083-91. doi: 10.1038/ng2103. Epub 2007 Jul 29. PMID: 17660817.
- 29. De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT, Piccio L, Raychaudhuri S, Tran D, Aubin C, Briskin R, Romano S; International MS Genetics Consortium; Baranzini SE, McCauley JL, Pericak-Vance MA, Haines JL, Gibson RA, Naeglin Y, Uitdehaag B, Matthews PM, Kappos L, Polman C, McArdle WL, Strachan DP, Evans D, Cross AH, Daly MJ, Compston A, Sawcer SJ, Weiner HL, Hauser SL, Hafler DA, Oksenberg JR. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. *Nat Genet*. 2009 Jul;41(7):776-82. doi: 10.1038/ng.401. Epub 2009 Jun 14. PMID: 19525953; PMCID: PMC2757648.
- 30. Langille MM, Rutatangwa A, Francisco C. Pediatric Multiple Sclerosis: A Review. *Adv Pediatr*. 2019 Aug;66:209-229. doi: 10.1016/j.yapd.2019.03.003. Epub 2019 Apr 20. PMID: 31230695.
- 31. Kauth F, Bertolini A, Wendel EM, Koukou G, Naggar IE, Chung J, Baumann M, Schödl C, Lechner C, Bigi S, Blaschek A, Hengstler JG, Schimmel M, Nosadini M, Sartori S, Puthenparampil M, Van's Gravesande KS, Drenckhahn A, Nikolaus M, Kauffmann B, Thiels C, Häusler MG, Eckenweiler M, Karenfort M, Marina AD, Selek A, Öncel I, Kornek B, Reindl M, Rostásy K. Characterization of children with early onset pediatric multiple sclerosis. *Eur J Paediatr Neurol*. 2025 Jan;54:113-120. doi: 10.1016/j.ejpn.2025.01.006. Epub 2025 Jan 23. PMID: 39879856.
- 32. Huppke B, Ellenberger D, Rosewich H, Friede T, Gärtner J, Huppke P. Clinical presentation of pediatric multiple sclerosis before puberty. *Eur J Neurol*. 2014 Mar;21(3):441-6. doi: 10.1111/ene.12327. Epub 2013 Dec 16. PMID: 24330201.

- 33. Carvalho IV, Dos Santos CS, Amaral J, Ribeiro JA, Pereira C, Pais RP, Palavra F. Multiple sclerosis under the age of ten: the challenge of a rare diagnosis in a special population a case series. *Front Neurosci.* 2023 Dec 20;17:1297171. doi: 10.3389/fnins.2023.1297171. PMID: 38174051; PMCID: PMC10761493.
- 34. Reinhardt K, Weiss S, Rosenbauer J, Gärtner J, von Kries R. Multiple sclerosis in children and adolescents: incidence and clinical picture new insights from the nationwide German surveillance (2009-2011). *Eur J Neurol*. 2014 Apr;21(4):654-9. doi: 10.1111/ene.12371. Epub 2014 Jan 28. PMID: 24471864.
- 35. Dică AD, Craiu D, Lincă FI, Budișteanu M, Iliescu C, Sandu C, Pomeran C, Bârcă D, Butoianu N, Burloiu C, Minciu I, Focșa I., Șurlică D, Tarța-Arsene O, Cazacu C, Badea A, Niculae AŞ, Ion DA. Age-onset-related particularities of pediatric MS understanding the spectrum: a tertiary center experience. *Diseases* 2025 Jun; 13(7):193. https://doi.org/10.3390/diseases13070193
- 36. McKay KA, Hillert J, Manouchehrinia A. Long-term disability progression of pediatric-onset multiple sclerosis. *Neurology*. 2019 Jun 11;92(24):e2764-e2773. doi: 10.1212/WNL.0000000000007647. Epub 2019 May 15. PMID: 31092624; PMCID: PMC6598792.
- 37. Gorman MP, Healy BC, Polgar-Turcsanyi M, Chitnis T. Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. *Arch Neurol.* 2009 Jan;66(1):54-9. doi: 10.1001/archneurol.2008.505. PMID: 19139299.
- 38. Renoux C, Vukusic S, Mikaeloff Y, Edan G, Clanet M, Dubois B, Debouverie M, Brochet B, Lebrun-Frenay C, Pelletier J, Moreau T, Lubetzki C, Vermersch P, Roullet E, Magy L, Tardieu M, Suissa S, Confavreux C; Adult Neurology Departments KIDMUS Study Group. Natural history of multiple sclerosis with childhood onset. *N Engl J Med.* 2007 Jun 21;356(25):2603-13. doi: 10.1056/NEJMoa067597. PMID: 17582070.
- 39. Ghezzi, A., Baroncini, D., Zaffaroni, M. *et al.* Pediatric versus adult MS: similar or different?. *Mult Scler Demyelinating Disord* **2**, 5 (2017). https://doi.org/10.1186/s40893-017-0022-6
- 40. Fay AJ, Mowry EM, Strober J, Waubant E. Relapse severity and recovery in early pediatric multiple sclerosis. *Mult Scler*. 2012 Jul;18(7):1008-12. doi: 10.1177/1352458511431725. Epub 2011 Dec 19. PMID: 22183939.
- 41. Özdemir A, Poyraz CA, Erten E, Çırakoğlu E, Tomruk N. Electroconvulsive Therapy in Women: A Retrospective Study from a Mental Health Hospital in Turkey. *Psychiatr Q.* 2016 Dec;87(4):769-779. doi: 10.1007/s11126-016-9425-3. PMID: 26887856.
- 42. Verhey LH, Branson HM, Shroff MM, Callen DJ, Sled JG, Narayanan S, Sadovnick AD, Bar-Or A, Arnold DL, Marrie RA, Banwell B; Canadian Pediatric Demyelinating Disease Network. MRI parameters for prediction of multiple sclerosis diagnosis in children with acute CNS demyelination: a prospective national cohort study. *Lancet Neurol.* 2011 Dec;10(12):1065-73. doi: 10.1016/S1474-4422(11)70250-2. Epub 2011 Nov 6. PMID: 22067635.
- 43. Forrester MB, Coleman L, Kornberg AJ. Multiple sclerosis in childhood: clinical and radiological features. *J Child Neurol*. 2009 Jan;24(1):56-62. doi: 10.1177/0883073808321042. Epub 2008 Oct 21. PMID: 18940915.
- 44. Chitnis T, Aaen G, Belman A, Benson L, Gorman M, Goyal MS, Graves JS, Harris Y, Krupp L,

- Lotze T, Mar S, Ness J, Rensel M, Schreiner T, Tillema JM, Waubant E, Weinstock-Guttman B, Roalstad S, Rose J, Weiner HL, Casper TC, Rodriguez M; US Network of Paediatric Multiple Sclerosis Centers. Improved relapse recovery in paediatric compared to adult multiple sclerosis. *Brain*. 2020 Sep 1;143(9):2733-2741. doi: 10.1093/brain/awaa199. PMID: 32810215.
- 45. Nicotera AG, Spoto G, Saia MC, Midiri M, Turriziani L, Amore G, Di Rosa G. Treatment of multiple sclerosis in children: A brief overview. *Clin Immunol.* 2022 Apr;237:108947. doi: 10.1016/j.clim.2022.108947. Epub 2022 Feb 2. PMID: 35123059.
- 46. Ramphul K, Mejias SG, Joynauth J. Pediatric multiple sclerosis in the United States in children ages 0-18. *Mult Scler Relat Disord*. 2020 Feb;38:101874. doi: 10.1016/j.msard.2019.101874. Epub 2019 Nov 25. PMID: 31805467.
- 47. Jakimovski D, Awan S, Eckert SP, Farooq O, Weinstock-Guttman B. Multiple Sclerosis in Children: Differential Diagnosis, Prognosis, and Disease-Modifying Treatment. *CNS Drugs*. 2022 Jan;36(1):45-59. doi: 10.1007/s40263-021-00887-w. Epub 2021 Dec 23. PMID: 34940954; PMCID: PMC8697541.
- 48. Ghezzi A, Pozzilli C, Liguori M, Marrosu MG, Milani N, Milanese C, Simone I, Zaffaroni M. Prospective study of multiple sclerosis with early onset. *Mult Scler*. 2002 Apr;8(2):115-8. doi: 10.1191/1352458502ms7860a. PMID: 11990867.
- 49. Boiko A, Vorobeychik G, Paty D, Devonshire V, Sadovnick D; University of British Columbia MS Clinic Neurologists. Early onset multiple sclerosis: a longitudinal study. *Neurology*. 2002 Oct 8;59(7):1006-10. doi: 10.1212/wnl.59.7.1006. PMID: 12370453.
- 50. Mikaeloff Y, Caridade G, Assi S, Suissa S, Tardieu M. Prognostic factors for early severity in a childhood multiple sclerosis cohort. *Pediatrics*. 2006 Sep;118(3):1133-9. doi: 10.1542/peds.2006-0655. PMID: 16951008.
- 51. Aaen G, Waltz M, Vargas W, Makhani N, Ness J, Harris Y, Casper TC, Benson L, Candee M, Chitnis T, Gorman M, Graves J, Greenberg B, Lotze T, Mar S, Tillema JM, Rensel M, Rodriguez M, Rose J, Rubin J, Schreiner T, Waldman A, Weinstock-Guttman B, Belman A, Waubant E, Krupp L. Acquisition of Early Developmental Milestones and Need for Special Education Services in Pediatric Multiple Sclerosis. *J Child Neurol*. 2019 Mar;34(3):148-152. doi: 10.1177/0883073818815041. Epub 2018 Dec 17. PMID: 30556452; PMCID: PMC6579723. 52. Julian L, Serafin D, Charvet L, Ackerson J, Benedict R, Braaten E, Brown T, O'Donnell E, Parrish J, Preston T, Zaccariello M, Belman A, Chitnis T, Gorman M, Ness J, Patterson M, Rodriguez M, Waubant E, Weinstock-Guttman B, Yeh A, Krupp LB; Network of Pediatric MS Centers of Excellence. Cognitive impairment occurs in children and adolescents with multiple sclerosis: results from a United States network. *J Child Neurol*. 2013 Jan;28(1):102-7. doi: 10.1177/0883073812464816. Epub 2012 Nov 15. PMID: 23155206; PMCID: PMC3652651.
- 53. Chou IJ, Whitehouse WP, Wang HS, Tanasescu R, Constantinescu CS. Diagnostic modalities in multiple sclerosis: perspectives in children. *Biomed J.* 2014 Mar-Apr;37(2):50-9. doi: 10.4103/2319-4170.129269. PMID: 24732659.
- 54. Hintzen RQ, Dale RC, Neuteboom RF, Mar S, Banwell B. Pediatric acquired CNS demyelinating syndromes: Features associated with multiple sclerosis. *Neurology*. 2016 Aug 30;87(9 Suppl 2):S67-73. doi: 10.1212/WNL.000000000002881. PMID: 27572864.
- 55. Waldman A, Ness J, Pohl D, Simone IL, Anlar B, Amato MP, Ghezzi A. Pediatric multiple

- sclerosis: Clinical features and outcome. *Neurology*. 2016 Aug 30;87(9 Suppl 2):S74-81. doi: 10.1212/WNL.000000000003028. PMID: 27572865; PMCID: PMC10688072.
- 56. Yılmaz Ü, Anlar B, Gücüyener K; Turkish Pediatric Multiple Sclerosis Study Group. Characteristics of pediatric multiple sclerosis: The Turkish pediatric multiple sclerosis database. *Eur J Paediatr Neurol.* 2017 Nov;21(6):864-872. doi: 10.1016/j.ejpn.2017.06.004. Epub 2017 Jun 29. PMID: 28694135.
- 57. Tardieu M, Banwell B, Wolinsky JS, Pohl D, Krupp LB. Consensus definitions for pediatric MS and other demyelinating disorders in childhood. *Neurology*. 2016 Aug 30;87(9 Suppl 2):S8-S11. doi: 10.1212/WNL.000000000002877. PMID: 27572866.
- 58. Mikaeloff Y, Maurey H, Tardieu M. Nouveautés sur la sclérose en plaques de l'enfant [Innovations on multiple sclerosis]. *Arch Pediatr.* 2007 Dec;14(12):1468-71. French. doi: 10.1016/j.arcped.2007.09.009. Epub 2007 Oct 30. PMID: 17977699.
- 59. Boesen MS, Sellebjerg F, Blinkenberg M. Onset symptoms in paediatric multiple sclerosis. *Dan Med J.* 2014 Apr;61(4):A4800. PMID: 24814585.
- 60. Pena JA, Lotze TE. Pediatric multiple sclerosis: current concepts and consensus definitions. *Autoimmune Dis.* 2013;2013:673947. doi: 10.1155/2013/673947. Epub 2013 Nov 2. PMID: 24294520; PMCID: PMC3835839.
- 61. Chitnis T. Role of puberty in multiple sclerosis risk and course. *Clin Immunol.* 2013 Nov;149(2):192-200. doi: 10.1016/j.clim.2013.03.014. Epub 2013 Apr 2. PMID: 23623473.
- 62. Belman AL, Krupp LB, Olsen CS, Rose JW, Aaen G, Benson L, Chitnis T, Gorman M, Graves J, Harris Y, Lotze T, Ness J, Rodriguez M, Tillema JM, Waubant E, Weinstock-Guttman B, Casper TC; US Network of Pediatric MS Centers. Characteristics of Children and Adolescents With Multiple Sclerosis. *Pediatrics*. 2016 Jul;138(1):e20160120. doi: 10.1542/peds.2016-0120. PMID: 27358474; PMCID: PMC4925083.
- 63. Deiva K, Absoud M, Hemingway C, Hernandez Y, Hussson B, Maurey H, Niotakis G, Wassmer E, Lim M, Tardieu M; United Kingdom Childhood Inflammatory Demyelination (UK-CID) Study and French Kidbiosep Study. Acute idiopathic transverse myelitis in children: early predictors of relapse and disability. *Neurology*. 2015 Jan 27;84(4):341-9. doi: 10.1212/WNL.000000000001179. Epub 2014 Dec 24. PMID: 25540303.
- 64. Nasehi MM, Sahraian MA, Naser Moghadasi A, Ghofrani M, Ashtari F, Taghdiri MM, Tonekaboni SH, Karimzadeh P, Afshari M, Moosazadeh M. Clinical and Epidemiological Aspects of Multiple Sclerosis in Children. *Iran J Child Neurol.* 2017 Spring;11(2):37-43. PMID: 28698726; PMCID: PMC5493828.
- 65. Langille MM, Islam T, Burnett M, Amezcua L. Clinical Characteristics of Pediatric-Onset and Adult-Onset Multiple Sclerosis in Hispanic Americans. *J Child Neurol*. 2016 Jul;31(8):1068-73. doi: 10.1177/0883073816638754. Epub 2016 Mar 28. PMID: 27021143.
- 66. Heussinger N, Kontopantelis E, Gburek-Augustat J, Jenke A, Vollrath G, Korinthenberg R, Hofstetter P, Meyer S, Brecht I, Kornek B, Herkenrath P, Schimmel M, Wenner K, Häusler M, Lutz S, Karenfort M, Blaschek A, Smitka M, Karch S, Piepkorn M, Rostasy K, Lücke T, Weber P, Trollmann R, Klepper J, Häussler M, Hofmann R, Weissert R, Merkenschlager A, Buttmann M; for GRACE-MS (German-speaking Research Alliance for ChildrEn with Multiple Sclerosis).

- Oligoclonal bands predict multiple sclerosis in children with optic neuritis. *Ann Neurol.* 2015 Jun;77(6):1076-82. doi: 10.1002/ana.24409. Epub 2015 May 11. PMID: 25820181.
- 67. Wilejto M, Shroff M, Buncic JR, Kennedy J, Goia C, Banwell B. The clinical features, MRI findings, and outcome of optic neuritis in children. *Neurology*. 2006 Jul 25;67(2):258-62. doi: 10.1212/01.wnl.0000224757.69746.fb. PMID: 16864818.
- 68. Makhani N, Lebrun C, Siva A, Narula S, Wassmer E, Brassat D, Brenton JN, Cabre P, Carra Dallière C, de Seze J, Durand Dubief F, Inglese M, Langille M, Mathey G, Neuteboom RF, Pelletier J, Pohl D, Reich DS, Ignacio Rojas J, Shabanova V, Shapiro ED, Stone RT, Tenembaum S, Tintoré M, Uygunoglu U, Vargas W, Venkateswaren S, Vermersch P, Kantarci O, Okuda DT, Pelletier D; Observatoire Francophone de la Sclérose en Plaques (OFSEP), Société Francophone de la Sclérose en Plaques (SFSEP), the Radiologically Isolated Syndrome Consortium (RISC) and the Pediatric Radiologically Isolated Syndrome Consortium (PARIS). Oligoclonal bands increase the specificity of MRI criteria to predict multiple sclerosis in children with radiologically isolated syndrome. *Mult Scler J Exp Transl Clin*. 2019 Mar 20;5(1):2055217319836664. doi: 10.1177/2055217319836664. PMID: 30915227; PMCID: PMC6429663.
- 69. Wilbur C, Yeh EA. Radiologically isolated syndrome in children: Current knowledge and future directions. *Mult Scler Relat Disord*. 2018 Aug;24:79-84. doi: 10.1016/j.msard.2018.06.010. Epub 2018 Jun 21. PMID: 29966829.
- 70. Bhise V, Waltz M, Casper TC, Aaen G, Benson L, Chitnis T, Gorman M, Goyal MS, Wheeler Y, Lotze T, Mar S, Rensel M, Abrams A, Rodriguez M, Rose J, Schreiner T, Shukla N, Waubant E, Weinstock-Guttman B, Ness J, Krupp L, Mendelt-Tillema J; U.S. Network of Pediatric Multiple Sclerosis Centers. Silent findings: Examination of asymptomatic demyelination in a pediatric US cohort. *Mult Scler Relat Disord*. 2023 Mar;71:104573. doi: 10.1016/j.msard.2023.104573. Epub 2023 Feb 18. PMID: 36871372.
- 71. Jolliffe EA, Guo Y, Hardy TA, et al. Clinical and radiologic features, pathology, and treatment of Baló concentric sclerosis. *Neurology* 2021;97:e414–22.doi: 10.1212/WNL.000000000012230.
- 72. Dreha-Kulaczewski SF, Helms G, Dechent P, Hofer S, Gärtner J, Frahm J. Serial proton MR spectroscopy and diffusion tensor imaging in infantile Balo's concentric sclerosis. *Neuroradiology*. 2009 Feb; 51(2): 113-21. doi: 10.1007/s00234-008-0470-y
- 73. Hardy TA, Miller DH. Baló's concentric sclerosis. *Lancet Neurol*. 2014 Jul;13(7):740-6. doi: 10.1016/S1474-4422(14)70052-3. PMID: 24943346.
- 74. Dică AD, Craiu D, Iliescu C, Găină M-A, Sandu C, Pomeran C, Burloiu C, Găină A-M, Ion DA, Overtime Challenges of Diagnosis and Treatment in Two Pediatric Patients with Extensive Cerebral Tumefactive Lesions Indicative of Baló's Type Multiple Sclerosis, *Children*, 2025; 12(5):630. doi.org/10.3390/children12050630. https://www.mdpi.com/2227-9067/12/5/630.
- 75. Banwell B, Arnold DL, Tillema JM, Rocca MA, Filippi M, Weinstock-Guttman B, Zivadinov R, Sormani MP. MRI in the evaluation of pediatric multiple sclerosis. *Neurology*. 2016 Aug 30;87(9 Suppl 2):S88-96. doi: 10.1212/WNL.000000000002787. PMID: 27572868.
- 76. Barraza G, Deiva K, Husson B, Adamsbaum C. Imaging in Pediatric Multiple Sclerosis: An Iconographic Review. *Clin Neuroradiol*. 2021 Mar;31(1):61-71. doi: 10.1007/s00062-020-00929-8. Epub 2020 Jul 16. PMID: 32676699.

- 77. Wattjes MP, Ciccarelli O, Reich DS, Banwell B, de Stefano N, Enzinger C, Fazekas F, Filippi M, Frederiksen J, Gasperini C, Hacohen Y, Kappos L, Li DKB, Mankad K, Montalban X, Newsome SD, Oh J, Palace J, Rocca MA, Sastre-Garriga J, Tintoré M, Traboulsee A, Vrenken H, Yousry T, Barkhof F, Rovira À; Magnetic Resonance Imaging in Multiple Sclerosis study group; Consortium of Multiple Sclerosis Centres; North American Imaging in Multiple Sclerosis Cooperative MRI guidelines working group. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. *Lancet Neurol*. 2021 Aug;20(8):653-670. doi: 10.1016/S1474-4422(21)00095-8. Epub 2021 Jun 14. PMID: 34139157.
- 78. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. *Lancet*. 2004 Dec 11-17;364(9451):2106-12. doi: 10.1016/S0140-6736(04)17551-X. PMID: 15589308.
- 79. Jarius S, Franciotta D, Paul F, Ruprecht K, Bergamaschi R, Rommer PS, Reuss R, Probst C, Kristoferitsch W, Wandinger KP, Wildemann B. Cerebrospinal fluid antibodies to aquaporin-4 in neuromyelitis optica and related disorders: frequency, origin, and diagnostic relevance. *J Neuroinflammation*. 2010 Sep 8;7:52. doi: 10.1186/1742-2094-7-52. PMID: 20825655; PMCID: PMC2945323.
- 80. Kim W, Lee JE, Li XF, Kim SH, Han BG, Lee BI, Kim JK, Choi K, Kim HJ. Quantitative measurement of anti-aquaporin-4 antibodies by enzyme-linked immunosorbent assay using purified recombinant human aquaporin-4. *Mult Scler*. 2012 May;18(5):578-86. doi: 10.1177/1352458511424590. Epub 2011 Sep 30. PMID: 21965418.
- 81. Salama S, Khan M, Pardo S, Izbudak I, Levy M. MOG antibody-associated encephalomyelitis/encephalitis. *Mult Scler*. 2019 Oct;25(11):1427-1433. doi: 10.1177/1352458519837705. Epub 2019 Mar 25. PMID: 30907249; PMCID: PMC6751007.
- 82. Mummert E, Fritzler MJ, Sjöwall C, Bentow C, Mahler M. The clinical utility of anti-double-stranded DNA antibodies and the challenges of their determination. *J Immunol Methods*. 2018 Aug;459:11-19. doi: 10.1016/j.jim.2018.05.014. Epub 2018 May 26. PMID: 29807021.
- 83. Boelen R, de Vries T. Clinical characteristics of paediatric Hashimoto's encephalopathy. *Eur J Paediatr Neurol*. 2021 May;32:122-127. doi: 10.1016/j.ejpn.2021.04.006. Epub 2021 Apr 30. PMID: 33964645.
- 84. Pietikäinen A, Glader O, Kortela E, Kanerva M, Oksi J, Hytönen J. Borrelia burgdorferi specific serum and cerebrospinal fluid antibodies in Lyme neuroborreliosis. *Diagn Microbiol Infect Dis.* 2022 Nov;104(3):115782. doi: 10.1016/j.diagmicrobio.2022.115782. Epub 2022 Jul 22. PMID: 35970019.
- 85. Wong YYM, Bruijstens AL, Barro C, Michalak Z, Melief MJ, Wierenga AF, van Pelt ED, Neuteboom RF, Kuhle J, Hintzen RQ. Serum neurofilament light chain in pediatric MS and other acquired demyelinating syndromes. *Neurology*. 2019 Sep 3;93(10):e968-e974. doi: 10.1212/WNL.00000000000008057. Epub 2019 Aug 5. PMID: 31383792.
- 86. Preziosa P, Rocca MA, Filippi M. Current state-of-art of the application of serum neurofilaments in multiple sclerosis diagnosis and monitoring. *Expert Rev Neurother*. 2020 Aug;20(8):747-769. doi: 10.1080/14737175.2020.1760846. Epub 2020 May 12. PMID: 32326770.
- 87. Hegen H, Berek K, Bsteh G, Auer M, Altmann P, Di Pauli F, Grams A, Milosavljevic D,

- Ponleitner M, Poskaite P, Schnabl C, Wurth S, Zinganell A, Berger T, Walde J, Deisenhammer F. Kappa free light chain and neurofilament light independently predict early multiple sclerosis disease activity-a cohort study. *EBioMedicine*. 2023 May;91:104573. doi: 10.1016/j.ebiom.2023.104573. Epub 2023 Apr 20. PMID: 37086651; PMCID: PMC10148088.
- 88. Vanderschelden RK, Benjamin NL, Shurin MR, Shelton L, Wheeler SE. Clinical laboratory test utilization of CSF oligoclonal bands and IgG index in a tertiary pediatric hospital. *Clin Biochem*. 2024 Oct;131-132:110803. doi: 10.1016/j.clinbiochem.2024.110803. Epub 2024 Jul 23. PMID: 39053601.
- 89. Papadopoulou A, Pfister A, Tsagkas C, Gaetano L, Sellathurai S, D'Souza M, Cerdá-Fuertes N, Gugleta K, Descoteaux M, Chakravarty MM, Fuhr P, Kappos L, Granziera C, Magon S, Sprenger T, Hardmeier M. Visual evoked potentials in multiple sclerosis: P100 latency and visual pathway damage including the lateral geniculate nucleus. *Clin Neurophysiol*. 2024 May;161:122-132. doi: 10.1016/j.clinph.2024.02.020. Epub 2024 Feb 20. PMID: 38461596.
- 90. Britze J, Frederiksen JL. Optical coherence tomography in multiple sclerosis. *Eye (Lond)*. 2018 May;32(5):884-888. doi: 10.1038/s41433-017-0010-2. Epub 2018 Feb 2. PMID: 29391574; PMCID: PMC5944645.
- 91. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintoré M, Traboulsee AL, Trojano M, Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. *Lancet Neurol.* 2018 Feb;17(2):162-173. doi: 10.1016/S1474-4422(17)30470-2. Epub 2017 Dec 21. PMID: 29275977.
- 92. Absoud M, Cummins C, Desai N, Gika A, McSweeney N, Munot P, Hemingway C, Lim M, Nischal KK, Wassmer E. Childhood optic neuritis clinical features and outcome. *Arch Dis Child*. 2011 Sep;96(9):860-2. doi: 10.1136/adc.2009.175422. Epub 2010 Jun 16. PMID: 20554767.
- 93. Bruijstens AL, Lechner C, Flet-Berliac L, Deiva K, Neuteboom RF, Hemingway C, Wassmer E; E.U. paediatric MOG consortium; Baumann M, Bartels F, Finke C, Adamsbaum C, Hacohen Y, Rostasy K. E.U. paediatric MOG consortium consensus: Part 1 Classification of clinical phenotypes of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. *Eur J Paediatr Neurol.* 2020 Nov;29:2-13. doi: 10.1016/j.ejpn.2020.10.006. Epub 2020 Nov 4. PMID: 33162302.
- 94. Armangue T, Capobianco M, de Chalus A, Laetitia G, Deiva K; E.U. paediatric MOG consortium. E.U. paediatric MOG consortium consensus: Part 3 Biomarkers of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. *Eur J Paediatr Neurol.* 2020 Nov;29:22-31. doi: 10.1016/j.ejpn.2020.11.001. Epub 2020 Nov 7. PMID: 33191096.
- 95. Dică AD, Craiu D, Iliescu C, Găină M-A, Sandu C, Pomeran C, Bârcă D, Butoianu N, Burloiu C, Minciu I, et al, Pediatric-Onset Multiple Sclerosis (POMS) and Epilepsy: Exploring Etiological Complexity—Outcomes from a Single-Center Experience, *Children*, 2025; 12(5):631. doi.org/10.3390/children12050631.https://www.mdpi.com/2227-9067/12/5/631.
- 96. Krysko KM, Graves J, Rensel M, Weinstock-Guttman B, Aaen G, Benson L, Chitnis T, Gorman M, Goyal M, Krupp L, Lotze T, Mar S, Rodriguez M, Rose J, Waltz M, Charles Casper T, Waubant E; US Network of Pediatric MS Centers. Use of newer disease-modifying therapies in pediatric multiple sclerosis in the US. *Neurology*. 2018 Nov 6;91(19):e1778-e1787. doi:

- 10.1212/WNL.0000000000006471. Epub 2018 Oct 17. PMID: 30333163; PMCID: PMC6251604.
- 97. Banwell B, Reder AT, Krupp L, Tenembaum S, Eraksoy M, Alexey B, Pohl D, Freedman M, Schelensky L, Antonijevic I. Safety and tolerability of interferon beta-1b in pediatric multiple sclerosis. *Neurology*. 2006 Feb 28;66(4):472-6. doi: 10.1212/01.wnl.0000198257.52512.1a. PMID: 16505297.
- 98. Tenembaum SN, Banwell B, Pohl D, Krupp LB, Boyko A, Meinel M, Lehr L, Rocak S, Cantogno EV, Moraga MS, Ghezzi A; REPLAY Study Group. Subcutaneous interferon Beta-1a in pediatric multiple sclerosis: a retrospective study. *J Child Neurol*. 2013 Jul;28(7):849-56. doi: 10.1177/0883073813488828. Epub 2013 May 10. PMID: 23666046.
- 99. Chitnis T, Arnold DL, Banwell B, Brück W, Ghezzi A, Giovannoni G, Greenberg B, Krupp L, Rostásy K, Tardieu M, Waubant E, Wolinsky JS, Bar-Or A, Stites T, Chen Y, Putzki N, Merschhemke M, Gärtner J; PARADIGMS Study Group. Trial of Fingolimod versus Interferon Beta-1a in Pediatric Multiple Sclerosis. *N Engl J Med.* 2018 Sep 13;379(11):1017-1027. doi: 10.1056/NEJMoa1800149. PMID: 30207920.
- 100. U.S. Food and Drug Administration. FDA expands approval of Gilenya to treat multiple sclerosis in pediatric patients. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm607501.htm (Accessed on October 29, 2018).
- 101. Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, Vollmer T, Agius MA, Kappos L, Stites T, Li B, Cappiello L, von Rosenstiel P, Lublin FD. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. *Lancet Neurol*. 2014 Jun;13(6):545-56. doi: 10.1016/S1474-4422(14)70049-3. Epub 2014 Mar 28. Erratum in: Lancet Neurol. 2013 Jun;13(6):536. PMID: 24685276.
- 102. Dică AD, Craiu D, Lincă FI, Sporea C, Iliescu C, Sandu C, Pomeran C, Bârcă D, Butoianu N, Burloiu C, Minciu I, Şurlică D, Moţoescu C, Tarţa-Arsene O, Cazacu C, Badea A, Budişteanu M, Roşca I, Ion DA, Therapeutic options and outcomes in pediatric-onset multiple sclerosis with a focus on fingolimod—Eastern European tertiary center experience and literature review, *Balneo and PRM Research Journal*, 2025; 16(2):800. https://doi.org/10.12680/balneo.2025.800.
- 103. Kornek B, Aboul-Enein F, Rostasy K, Milos RI, Steiner I, Penzien J, Hellwig K, Pitarokoili K, Storm van's Gravesande K, Karenfort M, Blaschek A, Meyer A, Seidl R, Debelic D, Vass K, Prayer D, Kristoferitsch W, Bayas A. Natalizumab therapy for highly active pediatric multiple sclerosis. *JAMA Neurol.* 2013 Apr;70(4):469-75. doi: 10.1001/jamaneurol.2013.923. PMID: 23420110.
- 104. Bibinoğlu Amirov C, Saltık S, Yalçınkaya C, Tütüncü M, Saip S, Siva A, Uygunoğlu U. Ocrelizumab in pediatric multiple sclerosis. *Eur J Paediatr Neurol*. 2023 Mar;43:1-5. doi: 10.1016/j.ejpn.2023.01.011. Epub 2023 Jan 27. PMID: 36724688.
- 105. Breu M, Sandesjö F, Milos RI, Svoboda J, Salzer J, Schneider L, Reichelt JB, Bertolini A, Blaschek A, Fink K, Höftberger R, Lycke J, Rostásy K, Seidl R, Siegert S, Wickström R, Kornek B. Rituximab treatment in pediatric-onset multiple sclerosis. *Eur J Neurol*. 2024 May;31(5):e16228. doi: 10.1111/ene.16228. Epub 2024 Feb 20. PMID: 38375947; PMCID: PMC11235651.
- 106. Ghezzi A, Amato MP, Makhani N, Shreiner T, Gärtner J, Tenembaum S. Pediatric multiple sclerosis: Conventional first-line treatment and general management. Neurology. 2016 Aug 30;87(9)

- Suppl 2):S97-S102. doi: 10.1212/WNL.000000000002823. Erratum in: *Neurology*. 2016 Nov 8;87(19):2068. doi: 10.1212/WNL.00000000003369. PMID: 27572869.
- 107. Chitnis T, Ghezzi A, Bajer-Kornek B, Boyko A, Giovannoni G, Pohl D. Pediatric multiple sclerosis: Escalation and emerging treatments. *Neurology*. 2016 Aug 30;87(9 Suppl 2):S103-9. doi: 10.1212/WNL.0000000000002884. PMID: 27572854.
- 108. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). *Neurology*. 1983 Nov;33(11):1444-52. doi: 10.1212/wnl.33.11.1444. PMID: 6685237.
- 109. Smith A. Symbol Digit Modalities Test. Los Angeles: Western Psychological Services; 1991. 139.
- 110. Tarantino S, Proietti Checchi M, Papetti L, Monte G, Ferilli MAN, Valeriani M. Neuropsychological performances, quality of life, and psychological issues in pediatric onset multiple sclerosis: a narrative review. *Neurol Sci.* 2024 May;45(5):1913-1930. doi: 10.1007/s10072-023-07281-y. Epub 2023 Dec 29. PMID: 38157101; PMCID: PMC11021227.
- 111. Stark W, Huppke P, Gärtner J. Paediatric multiple sclerosis: the experience of the German Centre for Multiple Sclerosis in Childhood and Adolescence. *J Neurol*. 2008 Dec;255 Suppl 6:119-22. doi: 10.1007/s00415-008-6022-x. PMID: 19300972.
- 112. Margoni, M.; Rinaldi, F.; Perini, P.; Gallo, P. Therapy of Pediatric-Onset Multiple Sclerosis: State of the Art, Challenges, and Opportunities. *Front Neurol.* 2021, May, 17;12:676095. doi: 10.3389/fneur.2021.676095.
- 113. Zecca C, Bovis F, Novi G, Capobianco M, Lanzillo R, Frau J, Repice AM, Hakiki B, Realmuto S, Bonavita S, Curti E, Brambilla L, Mataluni G, Cavalla P, Di Sapio A, Signoriello E, Barone S, Maniscalco GT, Maietta I, Maraffi I, Boffa G, Malucchi S, Nozzolillo A, Coghe G, Mechi C, Salemi G, Gallo A, Sacco R, Cellerino M, Malentacchi M, De Angelis M, Lorefice L, Magnani E, Prestipino E, Sperli F, Brescia Morra V, Fenu G, Barilaro A, Abbadessa G, Signori A, Granella F, Amato MP, Uccelli A, Gobbi C, Sormani MP. Treatment of multiple sclerosis with rituximab: A multicentric Italian-Swiss experience. *Mult Scler*. 2020 Oct;26(12):1519-1531. doi: 10.1177/1352458519872889. Epub 2019 Oct 1. PMID: 31573386.
- 114. Hirsch, E.; French, J.; Scheffer, I.E.; Bogacz, A.; Alsaadi, T.; Sperling, M.R.; Abdulla, F.; Zuberi, S.M.; Trinka, E.; Specchio, N.; Somerville, E.; Samia, P.; Riney, K.; Nabbout, R.; Jain, S.; Wilmshurst, J.M.; Auvin, S.; Wiebe, S.; Perucca, E.; Moshé, S.L.; Tinuper, P.; Wirrell, E.C. ILAE definition of the Idiopathic Generalized Epilepsy Syndromes: Position statement by the ILAE Task Force on Nosology and Definitions. *Epilepsia* 2022, Jun, 63(6), 1475-1499. doi: 10.1111/epi.17236.
- 115. Specchio, N.; Wirrell, E.C.; Scheffer, I.E.; Nabbout, R.; Riney, K.; Samia, P.; Guerreiro, M.; Gwer, S.; Zuberi, S.M.; Wilmshurst, J.M.; Yozawitz, E.; Pressler, R.; Hirsch, E.; Wiebe, S.; Cross, H.J.; Perucca, E.; Moshé, S.L.; Tinuper, P.; Auvin, S. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. *Epilepsia* 2022 Jun,63(6), 1398-1442. doi: 10.1111/epi.17241.
- 116. Zuo, H., Peng, L., Li, W., Wang, Y., Du, X., Zou, X., Dong, Z., Yi, L., Yin, H., Quan, F., Cheng, O. Assessment of bidirectional relationships between multiple sclerosis and epilepsy: A two-sample Mendelian randomization study. *Mult Scler Relat Disord*. 2024, Jan;81:105148. doi:

- 10.1016/j.msard.2023.105148.
- 117. Silveira C, Guedes R, Maia D, Curral R, Coelho R. Neuropsychiatric Symptoms of Multiple Sclerosis: State of the Art. *Psychiatry Investig.* 2019 Dec;16(12):877-888. doi: 10.30773/pi.2019.0106. Epub 2019 Dec 9. PMID: 31805761; PMCID: PMC6933139.
- 118. Spelman T, Simoneau G, Hyde R, Kuhelj R, Alroughani R, Ozakbas S, Karabudak R, Yamout BI, Khoury SJ, Terzi M, Boz C, Horakova D, Kubala Havrdova E, Weinstock-Guttman B, Patti F, Altintas A, Mrabet S, Gouider R, Inshasi J, Shaygannejad V, Eichau S, Ward WL, Butzkueven H; MSBase Investigators. Comparative Effectiveness of Natalizumab, Fingolimod, and Injectable Therapies in Pediatric-Onset Multiple Sclerosis: A Registry-Based Study. *Neurology*. 2024 Apr 9;102(7):e208114. doi: 10.1212/WNL.00000000000208114. Epub 2024 Mar 6. Erratum in: Neurology. 2024 Jul 9;103(1):e209573. doi: 10.1212/WNL.000000000000209573. PMID: 38447093; PMCID: PMC11033984.
- 119. Arnold, D.L.; Banwell, B.; Bar-Or, A.; Ghezzi, A.; Greenberg, B.M.; Waubant, E.; Giovannoni, G.; Wolinsky, J.S.; Gärtner, J.; Rostásy, K.; et al. Effect of Fingolimod on MRI Outcomes in Patients with Paediatric-Onset Multiple Sclerosis: Results from the Phase 3 PARADIG MS Study. *J. Neurol. Neurosurg. Psychiatry* **2020**, *91*, 483–492, doi:10.1136/jnnp-2019-322138.
- 120. Yeh EA, Waubant E, Krupp LB, Ness J, Chitnis T, Kuntz N, Ramanathan M, Belman A, Chabas D, Gorman MP, Rodriguez M, Rinker JR 2nd, Weinstock-Guttman B; National Network of Pediatric MS Centers of Excellence. Multiple sclerosis therapies in pediatric patients with refractory multiple sclerosis. *Arch Neurol.* 2011 Apr;68(4):437-44. doi: 10.1001/archneurol.2010.325. Epub 2010 Dec 13. PMID: 21149803.
- 121. Krupp, L.; Banwell, B.; Chitnis, T.; Deiva, K.; Gaertner, J.; Ghezzi, A.; Huppke, P.; Waubant, E.; DeLasHeras, V.; Azmon, A.; et al. Effect of Fingolimod on Health-Related Quality of Life in Paediatric Patients with Multiple Sclerosis: Results from the Phase 3 PARADIG MS Study. *BMJ Neurol. Open* 2022, *4*, e000215, doi:10.1136/bmjno-2021-000215.
- 122. Piri Cinar B, Konuskan B, Anlar B, Ozakbas S. Narrative review based on fingolimod therapy in pediatric MS. *SAGE Open Med.* 2023 May 8;11:20503121231171996. doi: 10.1177/20503121231171996. PMID: 37181277; PMCID: PMC10170592.
- 123. Alroughani R, Ahmed SF, Behbehani R, Al-Hashel J. The Use of Natalizumab in Pediatric Patients With Active Relapsing Multiple Sclerosis: A Prospective Study. *Pediatr Neurol.* 2017 May;70:56-60. doi: 10.1016/j.pediatrneurol.2017.01.017. Epub 2017 Feb 2. PMID: 28389054.